2.1  映射與函數(shù)

〖考綱要求〗了解映射的概念,在此基礎(chǔ)上理解函數(shù)及其有關(guān)概念.

〖復(fù)習(xí)要求〗掌握函數(shù)的有關(guān)概念及三種表示方法,會(huì)求簡(jiǎn)單函數(shù)的解析式.

〖復(fù)習(xí)建議〗在理解映射概念的基礎(chǔ)上,深刻理解函數(shù)的概念――非空數(shù)集之間的映射,函數(shù)定義的三要素中,定義域是函數(shù)的靈魂,對(duì)應(yīng)法則是核心,要學(xué)會(huì)用函數(shù)的觀點(diǎn)與思想解決方程、不等式和數(shù)列問(wèn)題,要理解函數(shù)的符號(hào),掌握函數(shù)表示法,會(huì)判斷兩個(gè)函數(shù)是否是同一函數(shù).

〖雙基回顧〗1、A到B的映射:                                                         ;

2、集合A中有n個(gè)元素,集合B中有m個(gè)元素,那么從A到B的映射有       個(gè);

3、函數(shù)的近代定義是:                                                     ;

4、函數(shù)的三要素是:                                     ;

〖重點(diǎn)難點(diǎn)〗函數(shù)表達(dá)式的建立

一、知識(shí)點(diǎn)訓(xùn)練:

1、下列是映射的是…………………………………………………………………………………(    )

試題詳情

 

 

 

 

試題詳情

(A)1、2、3          (B)1、2、5         (C)1、3、5         (D)1、2、3、5

試題詳情

2、設(shè)集合A={a,b,c},B={0,1},那么從B到A的映射有………………………………(    )

(A)3個(gè)             (B)6個(gè)             (C)8個(gè)             (D)9個(gè)

試題詳情

  3、下列與函數(shù)y=x是同一函數(shù)的是……………………………………………………………(    )

試題詳情

(A)         (B)         (C)        (D)

試題詳情

4、,那么f(f(-2))=       ;如果f(a)=3,那么實(shí)數(shù)a=         .

試題詳情

二、典型例題分析:

1、已知=2x-1,=  ,求f(g(x))和g(f(x))的表達(dá)式.

 

 

 

試題詳情

2、A、B兩地相距150km,某汽車(chē)以50km/h的速度從A到B,到達(dá)B后在B地停留2個(gè)小時(shí)之后又從B地以60km/h的速度返回,寫(xiě)出該車(chē)離開(kāi)A地的距離S(km)與時(shí)間t(小時(shí))的函數(shù)關(guān)系.

 

 

 

試題詳情

3、求滿足下列條件的函數(shù)解析式:

試題詳情

  ⑴         ⑵是一次函數(shù).

 

 

 

 

 

 

試題詳情

4、如圖,把邊長(zhǎng)為1的正方形沿x正方向平移,設(shè)OA=x,把此正方形與圖中的三角形的公共部分的面積S表示為x的函數(shù).

試題詳情

 

 

 

 

 

 

 

 

 

 

試題詳情

三、課堂練習(xí):

1、映射,其中A={-3,-2,-1,1,2,3,4},集合B中的元素都A中的元素在映射f下的象,且對(duì)于任意的a∈A,在集合B中和它對(duì)應(yīng)的元素是|a|,則B中的元素有……(    )

(A)4個(gè)           (B)5個(gè)         (C)6個(gè)          (D)7個(gè)

試題詳情

2、下面哪一個(gè)圖形可以作為函數(shù)的圖象…………………………………………………………(    )

 

 

 

 

 

 

試題詳情

(A)               (B)                  (C)                 (D)

試題詳情

  3、如圖為函數(shù)y=的圖象,

那么此函數(shù)的表達(dá)式為         .

 

試題詳情

四、課堂小結(jié):

1、映射概念的理解應(yīng)從以下幾個(gè)方面進(jìn)行:A、B非空;A中無(wú)剩余;單值對(duì)應(yīng).

試題詳情

2、理解函數(shù)與映射的關(guān)系要注意:函數(shù)是特殊的映射即有“f是函數(shù)”是“f是映射”的充分不必要條件.

試題詳情

3、在書(shū)寫(xiě)分段函數(shù)的表達(dá)式時(shí),要注意定義域的合理性.

試題詳情

4、具有實(shí)際意義的函數(shù)的定義域必須具有實(shí)際意義.

五、能力測(cè)試:                           姓名              得分          

試題詳情

1、M={3,4,5},N={-1,0,1},從M到N的映射f滿足x+f(x)是偶數(shù),這樣的映射有(    )

   (A)3                (B) 4                 (C)27                  (D) 9

試題詳情

2、如果(xy)在映射f下的象為(xy,xy),那么(1,2)的原象是……………………(    )

試題詳情

   (A)(-,)    (B) (,-)      (C) (-,-)     (D) (

試題詳情

3、函數(shù)f(x)=,滿足恒成立,那么常數(shù)c的值是………………………(    )

   (A)3                (B) -3               (C)3或者-3           (D) 8或者-3

試題詳情

4、下列各組函數(shù)中,fx)與gx)相同的是…………………………………………………(     )

試題詳情

   (A)f(x)=lnx , g(x)=                  (B)f(x)=x,g(x)=            

試題詳情

(C),g(x)=f-1(x)  (D) fx)=0.1lg(2x-1,

試題詳情

5、已知fx)是表示經(jīng)過(guò)(0,-2)的一條直線,gx)表示經(jīng)過(guò)(0,0)的另一直線,如果又有關(guān)系fgx))=gfx))=3x-2,求這兩條直線的交點(diǎn)坐標(biāo).

 

 

 

 

試題詳情

試題詳情

6、用長(zhǎng)為l的鐵絲彎成下部為矩形,上部為半圓的框架,如果設(shè)底邊長(zhǎng)為2x,  求此框架?chē)傻拿娣ey與x的函數(shù)關(guān)系式,并且求出其定義域及面積最大值.

                                              

                                               

 

 

 

 

試題詳情

7、建造一個(gè)容積為2000m3,深為5m的長(zhǎng)方體水池,池底每平方米的造價(jià)100元,池壁每平方米造價(jià)75元,設(shè)總造價(jià)為y元,底面一邊長(zhǎng)為x米,求y關(guān)于x的函數(shù)解析式及其定義域及值域.

 

 

 

 

 

試題詳情

  8、AB是單位半圓的直徑,動(dòng)點(diǎn)P從A出發(fā)先過(guò)半圓弧再沿BA回到A點(diǎn),試把動(dòng)點(diǎn)P到點(diǎn)A的水平距離S表示為路程x的函數(shù).

 

 

試題詳情

2.2  函數(shù)的定義域與值域

〖考綱要求〗理解函數(shù)的定義域,理解函數(shù)的值域與最值的概念,會(huì)求簡(jiǎn)單函數(shù)的值域與最值

〖復(fù)習(xí)要求〗理解函數(shù)定義域意義,會(huì)求有關(guān)函數(shù)的定義域,掌握求簡(jiǎn)單函數(shù)的值域與最值的方法

〖復(fù)習(xí)建議〗由所給函數(shù)表達(dá)式會(huì)求其定義域;會(huì)求復(fù)合函數(shù)的定義域;會(huì)根據(jù)函數(shù)的定義域情況討論函數(shù)表達(dá)式中參數(shù)的取值范圍;掌握有實(shí)數(shù)意義的函數(shù)定義域的求法.

求函數(shù)的值域主要從以下幾個(gè)方法入手:觀察法、配方法、判別式法、單調(diào)性法、不等式法、部分分式法、換元法、有界性法、數(shù)形結(jié)合法,其中最為重要的是:觀察法、判別式法、單調(diào)性法、不等式法、有界性法、數(shù)形結(jié)合法.

〖雙基回顧〗⑴一次函數(shù)與二次函數(shù)、正余弦函數(shù)的定義域

⑵無(wú)理函數(shù)與對(duì)數(shù)函數(shù)、正余切函數(shù)的定義域

⑶分式函數(shù)與最簡(jiǎn)單的冪函數(shù)的定義域

⑷一般復(fù)合函數(shù)的定義域的求法.

⑸反函數(shù)的定義域與原函數(shù)的值域的關(guān)系.

特別提示:函數(shù)的定義域不可能是空集.

試題詳情

一、知識(shí)點(diǎn)訓(xùn)練:

1、函數(shù)的定義域?yàn)椤?nbsp;   )

(A)空集        (B)單元素集       (C)無(wú)限集       (D)雙元素集

試題詳情

2、如果函數(shù)f(x)的定義域?yàn)閇0,2],那么函數(shù)f(x+3)的定義域?yàn)椤?nbsp;   )

(A)[3,5]       (B)[0,2]          (C)[-3,0]     (D)[-3,-1]

試題詳情

  3、函數(shù)的定義域?yàn)镸,函數(shù)的定義域?yàn)镹(a>b>0),則下列關(guān)系正確的是……………………………………………………………(    )

試題詳情

(A)MN       (B)MN          (C)MN=    (D)M=N

試題詳情

4、下列函數(shù)值域?yàn)镽+的是…………………………………………………………………………(    )

試題詳情

  (A)         (B )       (C)    (D)y=x2+x+1

試題詳情

5、函數(shù)(x≤-2)的反函數(shù)的定義域?yàn)椤?nbsp;   )

試題詳情

  (A)          (B )      (C) (D)

試題詳情

6、函數(shù)的值域?yàn)?u>           ;7、函數(shù)的值域?yàn)?u>         .

試題詳情

二、典型例題分析:

1、 求下列函數(shù)的定義域:

試題詳情

;         ⑵;

試題詳情

.

 

 

 

 

試題詳情

2、已知扇形周長(zhǎng)為10,求此扇形的面積S與半徑r之間的函數(shù)關(guān)系式并且求其定義域.

 

 

 

 

試題詳情

3、如果函數(shù)的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

 

 

 

 

試題詳情

4、⑴求值域    ⑵求值域   ⑶求值域y.

試題詳情

   ⑷函數(shù)的值域?yàn)閇-1,4],求實(shí)數(shù)a、b的值

 

 

 

 

 

 

 

 

試題詳情

三、課堂練習(xí):

1、的定義域?yàn)锳, 的定義域?yàn)锽,則…(    )

試題詳情

(A)A=B        (B)A∩B=φ       (C)AB         (D)AB

試題詳情

2、如果函數(shù)f(x)的定義域?yàn)閇-1,3],那么函數(shù)f(x)-f(-x)的定義域?yàn)?u>          .

試題詳情

3、如果函數(shù)f(x)=的定義域?yàn)閇-,+,那么實(shí)數(shù)a的取值范圍是         .

試題詳情

5、函數(shù)的定義域?yàn)镽,那么實(shí)數(shù)a的取值范圍是             .

試題詳情

6、用適當(dāng)?shù)姆椒ㄇ笙铝泻瘮?shù)的值域:

試題詳情

(換元法)                         ⑵(部分分式法)

試題詳情

四、能力測(cè)試:                           姓名              得分          

1、函數(shù)的定義域是……………………………………………………………(    )

試題詳情

  (A)(2,+∞)         (B) (1,2)∪(2,+∞)    (C) (1,+∞)         (D)(-)

試題詳情

2、函數(shù)的定義域?yàn)镽,那么實(shí)數(shù)a的取值范圍是………………………(    )

試題詳情

  (A)(-∞,+∞)      (B)(0,)             (C) (-,+∞)      (D)

試題詳情

3、如果函數(shù)的圖象在x軸上方,那么此函數(shù)的定義域?yàn)椤?nbsp;   )

  (A)(-1,1)      (B)(1,+∞)∪(-∞,-1)  (C)(-∞,1)且x≠-1   (D)(-1,+∞)且x≠1

試題詳情

4、函數(shù)的值域?yàn)椤?nbsp;   )

試題詳情

(A)(-1,1)           (B)[+1,1]             (C)            (D)

試題詳情

5、函數(shù)f(x)的值域?yàn)閇-2,2],則函數(shù)f(x+1)的值域?yàn)椤?nbsp;   )

(A)[-1,3]          (B)[-3,1]           (C)[-2,2]          (D)[-1,1]

試題詳情

6、函數(shù)的值域?yàn)椋ǎ,?)∪(-2,+∞),則實(shí)數(shù)a=          .

試題詳情

7、函數(shù)的定義域?yàn)?u>                   .

試題詳情

8、函數(shù)的定義域?yàn)?u>                   .

試題詳情

9、函數(shù)=x2+x+的定義域是[n,n+1](n是自然數(shù)),則此函數(shù)值域中的整數(shù)一共有     個(gè).

試題詳情

10、如果函數(shù)的定義域?yàn)镽,則實(shí)數(shù)k的取值范圍是              .

試題詳情

11、求函數(shù)的值域

 

 

 

 

試題詳情

12、求函數(shù)的定義域和值域.

 

 

 

 

 

 

試題詳情

2.3  函數(shù)的單調(diào)性

〖考綱要求〗理解增函數(shù)、減函數(shù)的定義,并會(huì)運(yùn)用定義判定或證明一些簡(jiǎn)單函數(shù)的增減性;能結(jié)合函數(shù)的圖象劃分函數(shù)的單調(diào)區(qū)間;

〖復(fù)習(xí)要求〗理解增函數(shù)、減函數(shù)的定義,并會(huì)運(yùn)用定義判定或證明一些簡(jiǎn)單函數(shù)的增減性;能結(jié)合函數(shù)的圖象劃分函數(shù)的單調(diào)區(qū)間;會(huì)討論復(fù)合函數(shù)的單調(diào)性.

〖復(fù)習(xí)建議〗理解增函數(shù)、減函數(shù)的定義,掌握判斷函數(shù)單調(diào)性的方法與步驟:設(shè)值、作差、比較、結(jié)論,能借助圖象尋找函數(shù)的單調(diào)區(qū)間,掌握簡(jiǎn)單的復(fù)合函數(shù)單調(diào)性規(guī)律,學(xué)會(huì)用變量變化規(guī)律逐步尋找函數(shù)變化規(guī)律的判斷方法

試題詳情

〖雙基回顧〗1、函數(shù)yf(x)在其定義域的一個(gè)子區(qū)間M上為增函數(shù)減函數(shù))的充要條件是:                          

                                          、在此區(qū)間M上,函數(shù)的圖象是                     ;如果函數(shù)yf(x)在區(qū)間M上為增函數(shù)或?yàn)闇p函數(shù),則稱(chēng)在M上具有         、M稱(chēng)為f(x)的          .

試題詳情

2、一次函數(shù)ykxb,當(dāng)k>0時(shí),在     上是       函數(shù)、當(dāng)k<0時(shí),在    上是       函數(shù)、

試題詳情

3、奇函數(shù)yf(x)在區(qū)間[a,b]上是減函數(shù),那么它在區(qū)間[-b,-a]上是            ;偶函數(shù)yf(x)在區(qū)間[ab]上是減函數(shù),那么它在區(qū)間[-b,-a]上是               .(填增減性)

試題詳情

4、函數(shù)y=x+(a>0)的單調(diào)區(qū)間為                         .(記住這個(gè)結(jié)論)

試題詳情

一、基礎(chǔ)知識(shí)練習(xí):

1、奇函數(shù)f(x)在[3,7]上單調(diào)遞增且最小值為5,那么在[-7,-3]上……………………(    )

   (A)遞增,最小-5      (B)遞減,最。5       (C)遞增,最大-5      (D)遞減,最大-5

試題詳情

2、函數(shù)f(x)在[a,b]上單調(diào)并且f(a)?f(b)<0,則方程f(x)=0在[a,b]上…………(    )

   (A)至少一解          (B)至多一解           (C)恰一解           (D)無(wú)解

試題詳情

3、函數(shù)f(x)=x2+mx+n滿足f(2+t)=f(2-t),那么a=f(1),b=f(2),c=f(4)的大小關(guān)系是…………(    )

   (A)b<a<c           (B)a<b<c             (C) b<c<a          (D) c<b<a

試題詳情

4、函數(shù)y=(2k+1)x+b在R上為減函數(shù),則k∈               .

試題詳情

5、f(x)=loga|x+1|在(-1,0)上恒正,則在(-∞,-1)上f(x)=loga|x+1|的單調(diào)性為             .

試題詳情

6、函數(shù)f(x)=的值域?yàn)?u>             .

試題詳情

二、典型例題分析:

1、x>0時(shí)<0,并且,求證:y=是減函數(shù)

 

 

 

 

 

試題詳情

2、求下列函數(shù)的單調(diào)區(qū)間:

試題詳情

               ⑵y=lg(3sin(-x))

 

 

試題詳情

3、函數(shù)=上遞增,求實(shí)數(shù)a的取值范圍.

 

 

 

 

 

試題詳情

4、判斷函數(shù)的單調(diào)性.

 

 

 

 

 

試題詳情

5、是否存在實(shí)常數(shù)k,使=在(0,k)上遞減,而在(k,+∞)上遞增?

 

 

 

 

 

 

試題詳情

6、定義在[-1,1]上的函數(shù)yf(x)是減函數(shù),且是奇函數(shù),若f(a2a-1)+f(4a-5)>0,求實(shí)數(shù)a的取值范圍.

 

 

 

 

 

 

 

試題詳情

三、課堂練習(xí):

1、在區(qū)間(0,2)上是增函數(shù)的是……………………………………………………………………(    )

試題詳情

  (A)y=-x+1          (B)y=          (C)y= x2-4x+5        (D)y=

試題詳情

2、函數(shù)y=f(x)是單調(diào)函數(shù),則方程f(x)=a…………………………………………………………(    )

  (A)至少一個(gè)解       (B)至多一個(gè)解      (C)恰一個(gè)解           (D)無(wú)窮多個(gè)解

試題詳情

3、函數(shù) y=f(x)在A上是增函數(shù),在B上也是增函數(shù),則在A∪B上的單調(diào)性為……………(    )

  (A)增函數(shù)           (B)減函數(shù)          (C)不確定             (D)先增后減

試題詳情

4、函數(shù)f(x)=x2+px+3在上單調(diào)遞減,在上單調(diào)遞增,則p=        .

試題詳情

5、函數(shù)的單調(diào)遞減區(qū)間為               .

試題詳情

四、能力測(cè)試:                             姓名              得分     

1、下列函數(shù)中,在區(qū)間(-∞,0)上是增函數(shù)的是……………………………………………………(    )

試題詳情

(A)yx2-4x+8    (B)yax+3(a≥0)     (C)      (D)

試題詳情

2、函數(shù)在區(qū)間(0,+∞)上是…………………………………………………………(    )

(A)正值增函數(shù)      (B)負(fù)值減函數(shù)       (C)正值減函數(shù)       (D)負(fù)值減函數(shù)

試題詳情

3、偶函數(shù)y=loga|x-b|在(-∞,0)上遞增,則a、b滿足…………………………………………(    )

(A)0<a<1,b=0    (B)a>1,b∈R       (C)a>1,b>0       (D)a>1,b=0

試題詳情

4、如果函數(shù)y=是R上的奇函數(shù)又是減函數(shù),那么函數(shù)是………………………(    )

(A)減函數(shù)、奇函數(shù)  (B)增函數(shù)、奇函數(shù)    (C)減函數(shù)、偶函數(shù)  (D)增函數(shù)、偶函數(shù)

試題詳情

5、如果函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-¥,4]上是減函數(shù),則a的取值范圍是      ;

試題詳情

6、函數(shù)y=的遞減區(qū)間為                  .

試題詳情

7、已知函數(shù)在區(qū)間(-2,+∞)上是增函數(shù),試求a的取值范圍.

 

 

 

 

 

試題詳情

8、y=是[-1,1]上的減函數(shù),又是奇函數(shù).

試題詳情

⑴求證:(提示:可分x1+x2≥0與x1+x2≤0證明)

試題詳情

⑵解不等式:

 

 

 

 

 

 

 

試題詳情

*9、=在(-∞,1)有意義,求實(shí)數(shù)a的取值范圍

 

 

 

 

 

 

 

試題詳情

2.4  函數(shù)的奇偶性

〖考綱要求〗理解函數(shù)的奇偶性的概念,并能判定一些簡(jiǎn)單函數(shù)的奇偶性;理解奇函數(shù)和偶函數(shù)的圖象的對(duì)稱(chēng)性,并能用對(duì)稱(chēng)性描繪奇函數(shù)或偶函數(shù)的圖象.

〖復(fù)習(xí)要求〗會(huì)判斷函數(shù)的奇偶性,能利用函數(shù)的奇偶性解決一些實(shí)際問(wèn)題.

〖復(fù)習(xí)建議〗要正確理解函數(shù)的奇偶性的定義,奇偶函數(shù)的定義是判定函數(shù)奇偶性的根本依據(jù),但要注意:

試題詳情

1、函數(shù)為奇函數(shù)或偶函數(shù)的必要條件是其定義域?yàn)?u>關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間;

試題詳情

2、f(-x)=-f(x f(-x)+f(x)=0Û( f(x)≠0)、

試題詳情

f(-x)=f(x f(-x)-f(x)=0Û( f(x)≠0);

試題詳情

3、奇偶性:奇函數(shù)、偶函數(shù)、又奇又偶、非奇非偶,要學(xué)會(huì)用圖象判斷函數(shù)的奇偶性

〖雙基回顧〗

試題詳情

1、若函數(shù)f(x)為定義域?yàn)?i>D的奇函數(shù),則f(x)應(yīng)滿足:⑴對(duì)任意xD,都有      ;(或者說(shuō)函數(shù)f(x)的定義域是           的區(qū)間)⑵f(-x)=          ;若函數(shù)f(x)為定義域?yàn)?i>D的偶函數(shù),則f(x)應(yīng)滿足:⑴對(duì)任意xD,都有      ;⑵f(-x)=          ;

試題詳情

2、奇函數(shù)的圖象關(guān)于                對(duì)稱(chēng);偶函數(shù)的圖象關(guān)于           對(duì)稱(chēng).

試題詳情

3、若非零函數(shù)f(x)、g(x)的奇偶性相同,則在公共定義域內(nèi),H(x)=f(x)g(x)為            ;若非零函數(shù)f(x)、g(x)的奇偶性相反,則在公共定義域內(nèi),H(x)=f(x)g(x)為               .

試題詳情

4、若f(x)的定義域?yàn)?i>R,且當(dāng)x∈[0,+¥)時(shí)為增函數(shù),則當(dāng)f(x)為奇函數(shù)時(shí),它在(-¥,0)上為_(kāi)____

       、當(dāng)f(x)為偶函數(shù)時(shí),它在(-¥,0)上為           .(填奇偶性)

1判斷下列函數(shù)的奇偶性:

試題詳情

一、典型例題分析:

;       ⑵f(x)=;      ⑶;

 

 

試題詳情

;      ⑸

 

 

 

 

試題詳情

2、如果函數(shù)f(x)滿足:f(x+y)+ f(xy)=2 f(x) f(y),f(0)≠0,判定函數(shù)f(x)的奇偶性.

 

 

 

 

 

 

試題詳情

3、奇函數(shù)f(x)的定義域是R,當(dāng)x>0時(shí),f(x)=-x2+2x+2,求f(x)在R上的表達(dá)式,并作出的圖象.

 

 

 

 

 

 

 

 

 

試題詳情

4、已知f(x)=(m2-1)x2+(m-1)xn+2為奇函數(shù),求m、n.

 

 

 

 

 

 

 

試題詳情

5、已知.f(x)=,⑴判斷f(x)的奇偶性;⑵證明f(x)>0.

 

 

 

 

 

 

 

試題詳情

二、課堂練習(xí):

1、函數(shù)的奇偶性是………………………………………………………(    )

(A)奇函數(shù)     (B)偶函數(shù)             (C)既奇又偶函數(shù)      (D)非奇非偶函數(shù)

試題詳情

2、已知yf(x)(xR)是奇函數(shù),則下列各點(diǎn)中,在曲線yf(x)上的點(diǎn)是…………………………(   )

試題詳情

(A)(a,f(-a))  (B)(-sina,-f(-sina)) (C)(-lga f(lg)) (D)(-a,-f(a))

試題詳情

3、既奇又偶函數(shù)的函數(shù)的個(gè)數(shù)為……………………………………………………………………(    )

(A)一個(gè)        (B)二個(gè)               (C)無(wú)窮多            (D)不存在

試題詳情

4、偶函數(shù)y=f(x)在x≥0時(shí),f(x)=sin2x-2sinx,則x<0時(shí),f(x)=           .

試題詳情

三、課堂小結(jié):

1、  函數(shù)的奇偶性是函數(shù)在整個(gè)定義域上的性質(zhì),前提條件是:定義域關(guān)于原點(diǎn)對(duì)稱(chēng),所以在判斷函數(shù)奇偶性時(shí),首先必須求函數(shù)的定義域.

試題詳情

2、  復(fù)雜函數(shù)奇偶性的判定可以改判定方式為:判斷是否等于0.

試題詳情

3、函數(shù)奇偶性應(yīng)用是一個(gè)重要的內(nèi)容,千萬(wàn)不能忽視.

試題詳情

四、能力測(cè)試:                                   姓名          得分         

1、函數(shù)y=x(|x|-1)(|x|≤3)的奇偶性是…………………………………………………………(    )

(A)奇函數(shù)      (B)偶函數(shù)           (C)非奇非偶函數(shù)    (D)既奇又偶函數(shù)

試題詳情

2、定義在R上的函數(shù)f(x)滿足:f(x+y) =f(x)- f(y),那么此函數(shù)是……………………………(    )

(A)奇函數(shù)      (B)偶函數(shù)           (C)非奇非偶函數(shù)    (D)既奇又偶函數(shù)

試題詳情

3、已知yf(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí)f(x)=x2-2x,則在R上,f(x)的解析式是…(   )

(A)x(x-2)      (B)x[|x|-2]           (C)|x|(x-2)        (D)|x|[|x|-2]

試題詳情

4、已知f(x)=x5ax3bx-8,且f(-2)=10,那么f(2)等于………………………………………(   )

(A)-26        (B)-18              (C)-10           (D)10

試題詳情

5、已知f(x)=ax2bx+3ab是偶函數(shù),且其定義域?yàn)閇a-1,2a],則a      、b       .

試題詳情

6、判斷下列函數(shù)的奇偶性:

試題詳情

 (1)f(x)=;                           (2);

 

 

 

 

 

試題詳情

7、如果函數(shù)y=f(x)是偶函數(shù),y=g(x)是奇函數(shù),且f(x)+g(x)=,求f(x)與、g(x)的表達(dá)式.

(求證:函數(shù)y=f(x)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng),則y=f(x)一定可以表示為一個(gè)奇函數(shù)和一個(gè)偶函數(shù)之和)

 

 

 

 

 

 

試題詳情

  8、奇函數(shù)y=f(x)滿足x<0時(shí),f(x)=,求函數(shù)y=f(x)的表達(dá)式并且解方程f(x)=2x.

 

 

 

 

 

 

 

試題詳情

9、已知f(x)=,如果 xg(x)>0,求證:f(x)>0.

 

 

 

 

試題詳情

2.5  反函數(shù)

〖考綱要求〗掌握互相為反函數(shù)圖象之間的關(guān)系.

〖復(fù)習(xí)要求〗理解反函數(shù)的概念,知道什么函數(shù)有反函數(shù),會(huì)求一個(gè)函數(shù)的反函數(shù),掌握互為反函數(shù)圖象之間的關(guān)系.

〖復(fù)習(xí)建議〗記住求反函數(shù)的步驟,知道原函數(shù)與反函數(shù)的定義域、值域關(guān)系,圖象關(guān)系,單調(diào)性關(guān)系,能利用反函數(shù)研究原函數(shù)的性質(zhì).

〖雙基回顧〗

試題詳情

1、求反函數(shù)的三個(gè)步驟是:⑴                                                .

試題詳情

2、原函數(shù)的定義域是反函數(shù)的                ;原函數(shù)的值域是反函數(shù)的            .

試題詳情

3、原函數(shù)的圖象與反函數(shù)的圖象關(guān)于                  .

試題詳情

4、原函數(shù)與反函數(shù)具有          單調(diào)性.

試題詳情

5、函數(shù)的反函數(shù)為…………………………………………………………………(     )

試題詳情

  (A)              (B)  

試題詳情

(C)              (D)

試題詳情

  6、判斷:原函數(shù)與反函數(shù)圖象的交點(diǎn)一定在直線y=x上,對(duì)嗎?

試題詳情

一、典型例題分析:

1、求下列函數(shù)的反函數(shù):

試題詳情

             ⑵

 

 

 

 

 

試題詳情

2、函數(shù),則實(shí)數(shù)a、b為何值時(shí),.

 

 

 

 

 

試題詳情

3、,的圖象與的圖象關(guān)于直線y=x對(duì)稱(chēng),求的值.

 

 

 

 

試題詳情

4、設(shè)0<a≠1,

試題詳情

  ⑴求函數(shù)的反函數(shù) 

 

 

 

 

 

 

 

 

試題詳情

⑵如果,求實(shí)數(shù)a的取值范圍.

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

二、課堂練習(xí):

1、下列哪一組的兩個(gè)函數(shù)是互為反函數(shù) …………………………………………………………(   )

(A)  f(x)=tgx,g(x)=ctgx                         (Bf(x)=lgx,g(x)=e

試題詳情

(C) f(x)=x2 ,                        (D)

試題詳情

2、已知,那么=……………………………………………………………(    )

試題詳情

(A) 2                (B)               (C)               (D) 2

試題詳情

3、已知f(x)=3x-2,則                 .

試題詳情

4、函數(shù)的反函數(shù)是                    .

試題詳情

三、課堂小結(jié):

1、反函數(shù)的定義域不能由其解析式確定,應(yīng)該是原函數(shù)的定義域.

試題詳情

2、互為反函數(shù)的兩個(gè)函數(shù)的圖象具有相同的增減性,他們的圖象關(guān)于直線y=x對(duì)稱(chēng).

試題詳情

3、分段函數(shù)的反函數(shù),應(yīng)該分別求出各段的反函數(shù),再合成.

試題詳情

四、能力測(cè)試:                             姓名              得分     

1、函數(shù)y=x2在下列區(qū)間不存在反函數(shù)的是………………………………………………………… (   )

試題詳情

(A)             (B)              (C) [-1,1]             (D) [0,1]

試題詳情

2、,則=…………………………………………………(    )

試題詳情

(A)3+2           (B) 3-2               (C) 1+             (D) 1-

試題詳情

3、如果,則……………………………………………(    )

試題詳情

(A)   x≥2   (B) -   x≥2    (C) -   x≥3  (D)   x≥3

試題詳情

4、函數(shù)y=2x-1的反函數(shù)是 ……………………………………………………………… (   )

試題詳情

(A)                           (B)   

試題詳情

(C)                     (D)

試題詳情

5、函數(shù)y=的反函數(shù)為y=,具有,則=……………………(    )

試題詳情

(A)a                 (B)b                    (C)                  (D)

試題詳情

6、的圖象過(guò)點(diǎn)A(1,3),函數(shù)的圖象過(guò)點(diǎn)B(2,0),則f(x)的表達(dá)式為        .

試題詳情

7、f-1(x)=log3(2x-1),則f(3)=              .

試題詳情

8、⑴求函數(shù)的反函數(shù) 

試題詳情

⑵若,求證:函數(shù)的圖象關(guān)于直線y=x對(duì)稱(chēng)

 

 

 

 

 

 

 

試題詳情

*9、設(shè)函數(shù)的圖象為C1,C1關(guān)于直線y=x的對(duì)稱(chēng)圖象為C2.

試題詳情

  ⑴求C2對(duì)應(yīng)的函數(shù)的解析式及定義域M

試題詳情

⑵對(duì)任意x1、x2M,并且x1≠x2,求證:

 

試題詳情

2.6  指數(shù)、對(duì)數(shù)函數(shù)

試題詳情

〖考綱要求〗掌握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的概念、圖象、性質(zhì)

〖復(fù)習(xí)建議〗掌握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的概念以及相互間的關(guān)系,熟悉它們的圖象,牢記主要的性質(zhì),會(huì)對(duì)這兩種函數(shù)的底數(shù)分大于1和在(0,1)之間進(jìn)行討論,注意對(duì)數(shù)函數(shù)的真數(shù)要求,掌握幾個(gè)數(shù)的大小比較方法.

〖雙基回顧〗(見(jiàn)右表,注意指數(shù)函數(shù)與對(duì)數(shù)     

函數(shù)是一對(duì)反函數(shù))

〖知識(shí)點(diǎn)訓(xùn)練〗

試題詳情

1、已知 當(dāng)

試題詳情

時(shí)        (增函數(shù),減函數(shù));

試題詳情

當(dāng)          .

試題詳情

2、已知        ;     

試題詳情

(增函數(shù),減函數(shù));當(dāng)           時(shí),f(x)<0.

試題詳情

3、當(dāng)時(shí),函數(shù)+3的圖象一定經(jīng)過(guò)點(diǎn)           ;函數(shù)的反函數(shù)圖象一定經(jīng)過(guò)點(diǎn)           .

試題詳情

4、已知的圖象經(jīng)過(guò)點(diǎn)(4,0),而且其反函數(shù)的圖象過(guò)點(diǎn)(1,7),則f(x)是 …(   )

(A)增函數(shù)          (B) 減函數(shù)          (C) 奇函數(shù)             (D) 偶函數(shù)

試題詳情

5、函數(shù)的值域?yàn)?u>              .

試題詳情

6、不等式的一個(gè)充分但不必要條件是……………………………… (   )

(A)x>2         (B) x>4          (C) 1<x<2           (D) x>1

試題詳情

一、典型例題分析:

1、 (1)如果0<a<b<1,試比較ab與ba的大小.

 

 

 

      (2)如果0<a<1, b=aa,c=ab,試比較a、b、c的大小關(guān)系.

 

 

試題詳情

2、函數(shù)(0<a≠1,b>0)

⑴求此函數(shù)的定義域;          ⑵判斷此函數(shù)的奇偶性;

⑶判斷此函數(shù)的單調(diào)性;        ⑷求此函數(shù)的反函數(shù);

 

 

 

 

 

 

試題詳情

3、設(shè)函數(shù)=,其中a是實(shí)數(shù),如果當(dāng)x∈時(shí),有意義,求實(shí)數(shù)a 的取值范圍.

 

 

 

 

 

 

試題詳情

4、已知

 

 

 

 

 

 

 

試題詳情

二、課堂練習(xí):

1、已知0<a<1,必有………………………………………………………………………………(    )

試題詳情

 (A)  (B)  (C)(1-a)3>(1-a)2   (D)(1-a)1+a>1

試題詳情

2、鐳經(jīng)過(guò)100年剩余原來(lái)質(zhì)量的95.76%,設(shè)質(zhì)量為1的鐳經(jīng)過(guò)x年剩余量為y,那么y關(guān)于x的

函數(shù)解析式為               .

試題詳情

3、函數(shù)y=3-5x的值域?yàn)?u>               .

試題詳情

4、定義在區(qū)間(-1,0)上的函數(shù)滿足:>0,那么實(shí)數(shù)a的取值范

圍是………………………………………………………………………………………………(    )

試題詳情

(A)    (B)      (C)     (D)

試題詳情

5、設(shè)函數(shù)=|lgx|,如果0<a<b<c,則……………………………(    )

(A)(c-1)(a-1)>0     (B)ac>1     (C)(a+1)(c+1)<0     (D)ac<1

試題詳情

三、能力測(cè)試:                      姓名                   得分       

1、函數(shù)………………… (   )

試題詳情

(A)   (B)    (C)      (D)

試題詳情

2、若函數(shù)上為減函數(shù),則a的取值范圍是……………………………… (   )

試題詳情

(A)          (B)           (C)           (D)

試題詳情

3、函數(shù)y=ax-b-1,當(dāng)a>1,b>0時(shí)的圖象經(jīng)過(guò)的象限是…………………………………………(    )

(A) Ⅰ、Ⅱ、Ⅲ     (B)Ⅱ、Ⅲ、Ⅳ          (C)Ⅰ、Ⅲ、Ⅳ            (D)Ⅰ、Ⅱ、Ⅳ

試題詳情

4、若,則a的取值范圍是…………………………………………………………………… (   )

試題詳情

(A)         (B)        (C)         (D)

試題詳情

5、圖中曲線是三條對(duì)數(shù)函數(shù)的圖象,如果a =b =c >1,則x1、

x2、x3滿足………………………………………………………(    )

(A) x1>x2>x3          (B) x3>x2>x1       

(C) x3>x1>x2          (D) x2>x1>x3 

試題詳情

6、已知函數(shù)則 

試題詳情

………………………………………………………………(   )

試題詳情

(A)0.38          (B)1.62           (C)2.38          (D) 2.62

試題詳情

7、已知函數(shù)f(x)的定義域是[0,1],則函數(shù)的定義域是                   .

試題詳情

8、函數(shù)單調(diào)遞增區(qū)間是                       .

試題詳情

9、已知,則實(shí)數(shù)x的取值范圍是               .

試題詳情

10、==0,且對(duì)x>0時(shí),恒有

  ⑴求實(shí)數(shù)a、b的值并且求其定義域

⑵求函數(shù)的單調(diào)區(qū)間.

 

 

試題詳情

11、已知函數(shù)=(0<a≠1

試題詳情

⑴求此函數(shù)的定義域;⑵討論函數(shù)的單調(diào)性;⑶解不等式;

 

 

試題詳情

2.7  二次問(wèn)題

〖考綱要求〗理解二次函數(shù)的概念,掌握它的圖象和性質(zhì),能靈活運(yùn)用二次函數(shù)的最值,了解二次函數(shù)、一元二次不等式、一元二次方程三者的關(guān)系.

〖復(fù)習(xí)要求〗理解二次函數(shù)的概念,掌握它的圖象和性質(zhì),能靈活運(yùn)用二次函數(shù)的最值以及二次函數(shù)的圖象和一元二次方程的實(shí)根分布范圍等知識(shí)解決有關(guān)問(wèn)題.了解二次函數(shù)、一元二次不等式、一元二次方程三者的關(guān)系. 學(xué)會(huì)把一元二次方程的根的條件轉(zhuǎn)化為圖象條件,然后再轉(zhuǎn)化為代數(shù)條件,會(huì)求含參數(shù)的二次函數(shù)的最值問(wèn)題

試題詳情

〖復(fù)習(xí)建議〗二次函數(shù)的關(guān)鍵是通過(guò)配方得出頂點(diǎn),由此可知函數(shù)的對(duì)稱(chēng)性、圖象、單調(diào)區(qū)間、最值和判別式等.

            二次函數(shù)解析式的基本形式有:

試題詳情

⑴標(biāo)準(zhǔn)式:;        ⑵頂點(diǎn)式:

試題詳情

⑶零點(diǎn)式:

二次方程的韋達(dá)定理很重要

試題詳情

一、知識(shí)點(diǎn)訓(xùn)練:

1、函數(shù)的圖象與x軸有交點(diǎn)的充要條件是 ……………………………………(   )

試題詳情

(A)a=0且b≠0    (B)a≠0      (C) (D)

試題詳情

2、已知函數(shù)的值恒小于零,那么………………………………………………… (   )

試題詳情

(A)m=9           (B)             (C)           (D) m

試題詳情

3、二次函數(shù)y=ax2+bx+c的圖象開(kāi)口向下,對(duì)稱(chēng)軸為x=1,圖象與x軸有兩個(gè)不同的交點(diǎn),一個(gè)交點(diǎn)的橫坐標(biāo)x1∈(2,3),那么………………………………………………………………………(    )

  (A)ab>0        (B)a+b+c<0       (C)a+c>b       (D)3b>2c

試題詳情

4、二次函數(shù)的圖象如右圖

試確定下列各式的正負(fù):a     ;b      ;c      ;

abc          ;b2-4ac       ;a+b+c         ;

試題詳情

5、方程x2+(2m-1)x+4-2m=0的一根大于2、一根小于2,那么實(shí)數(shù)m的取值范圍是          .

試題詳情

一、典型例題分析:

1、關(guān)于x的方程:3x2-5x+a=0的一根在(-2,0)內(nèi),另一根在(1,3)內(nèi),求實(shí)數(shù)k的取值范圍.

 

 

 

 

 

 

試題詳情

2、設(shè)二次函數(shù)f(x)滿足f(x-2)=f(-x-2),且圖象在y軸上的截距為1,在x軸上截得的線段長(zhǎng)為,求f(x)的表達(dá)式

 

 

 

 

 

 

 

試題詳情

3、函數(shù)=x2-2x+2在區(qū)間[t,t+1]上的最小值為,求的表達(dá)式及其最值.

 

 

 

 

 

 

試題詳情

4、設(shè)f(x)是R上以2為周期的函數(shù),當(dāng)時(shí),f(x)=x2,

試題詳情

  ⑴求f(x)在[1,3]上的解析式;⑵求f(-3)、f(3.5);⑶求f(x)的表達(dá)式.

 

 

 

 

 

 

 

試題詳情

5、設(shè)x=m時(shí),二次函數(shù)f(x)有最大值5;又二次函數(shù)的最小值為-2,=25,并且f(x)+ =x2+16x+13(m>0).⑴求實(shí)數(shù)m的值. ⑵求函數(shù)的表達(dá)式.

 

 

 

 

 

 

試題詳情

二、課堂練習(xí):

1、f(x)=x2lga-2x+1的圖象與x軸有兩個(gè)不同的交點(diǎn),那么實(shí)數(shù)a的取值范圍是             .

試題詳情

2、-4<k<0是函數(shù)y=kx2-kx-1恒負(fù)的               條件.

試題詳情

3、若二次函數(shù)對(duì)任意實(shí)數(shù)x都有f(1+x)=f(1-x),且f(1)<f(2),則的大小關(guān)系為                 .

試題詳情

四、能力測(cè)試:                             姓名              得分     

1、函數(shù)的圖象的對(duì)稱(chēng)軸為x+2=0,則m=       ;頂點(diǎn)坐標(biāo)為        ;遞增區(qū)間為                 ; 遞減區(qū)間為                 .

試題詳情

2、已知不等式,則a=       ;b=        .

試題詳情

3、函數(shù)=4x2-mx+5在區(qū)間上是增函數(shù),則的取值范圍是            .

試題詳情

4、二次函數(shù)滿足 (     )

(A)0                 (B) 3                (C) 6                 (D) 不能確定

試題詳情

5、已知函數(shù)上單調(diào)遞增,則a的取值范圍是…………………… (    )

試題詳情

(A)       (B)       (C)       (D)

試題詳情

6、兩個(gè)二次函數(shù)=ax2+bx+c與=bx2+ax+c的圖象只能是…………………………(    )

 

 

 

 

 

試題詳情

7、二次函數(shù)f(x)滿足:f(x)+ f(x-1)=-2x2+6x+3,求此函數(shù)的解析式.(設(shè)

 

 

 

 

試題詳情

8、函數(shù)=-x2+2ax+1-a在區(qū)間[0,1]上的最大值為2,求實(shí)數(shù)a的值.

 

 

 

 

 

試題詳情

9、x1、x2是方程:(a2+1)x2-2ax-1=0的根滿足:x2<x1<1并且x1>|x2|(1-x1),確定實(shí)數(shù)a的取值范圍.

 

 

 

 

 

 

 

試題詳情

2.8  抽象函數(shù)

〖考綱要求〗理解函數(shù)及其有關(guān)概念.

〖復(fù)習(xí)要求〗掌握函數(shù)的有關(guān)概念,會(huì)求簡(jiǎn)單函數(shù)的解析式,掌握函數(shù)解析式的一些形式變換,理解抽象函數(shù)的關(guān)系式的意義.

〖復(fù)習(xí)建議〗掌握一次、二次函數(shù)解析式,會(huì)用待定系數(shù)法求之,會(huì)用適當(dāng)?shù)姆椒ㄑ芯砍橄蠛瘮?shù).

〖雙基回顧〗求函數(shù)解析式的方法有:直接法、待定系數(shù)法、解方程組法、換元法、歸納猜想法…….

試題詳情

一、知識(shí)點(diǎn)訓(xùn)練:

1、f(x+1)=2x+1,則f(x)=            .

試題詳情

2、如果函數(shù)f(x)滿足:f(xy)=f(x)?f(y),f(x)恒不為0,那么f(0)=         .

試題詳情

3、f(x)=2x+3,g(x+2)=f(x),則g(x)=………………………………………………………………(    )

  (A)2x+1             (B)2x-1            (C)2x-3             (D)2x+7

試題詳情

二、典型例題分析:

1、 ⑴如果,求函數(shù)f(x)的表達(dá)式.

 

 

 

 

 

 

 

 

試題詳情

⑵如果,求函數(shù)f(x)的表達(dá)式.

 

 

 

 

 

 

試題詳情

  2、二次函數(shù)y=f(x)滿足:f(x)=f(2-x)并且x>1時(shí)f(x)為增函數(shù),如果a=f(0),b=,c=,試比較a、b、c的大小

 

 

 

 

 

 

 

 

 

試題詳情

3、對(duì)一切實(shí)數(shù)x、y,關(guān)系式:f(x-y)=f(x)-(2x-y+1)y,且,求函數(shù)f(x)的表達(dá)式.

 

 

 

 

 

 

 

 

 

試題詳情

4、定義在(0,+∞)上的增函數(shù)f(x)滿足:

⑴求證:f(1)=0

⑵求證:f(xn)=nf(x)

試題詳情

⑶如果f(3)=1,解不等式:

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

三、課堂練習(xí):

1、如果函數(shù)f(x)的定義域?yàn)镽+且滿足:f(xy)=f(x) f(y),f(8)=3,那么f()=         .

試題詳情

2、已知,那么f(3)=………………………………………………(    )

(A)5         (B)4         (C)3         (D)2

試題詳情

四、課堂小結(jié):

1、  解析式只是表示一種對(duì)應(yīng)關(guān)系,與具體的字母無(wú)關(guān)。如y=2x+1與u=2t+1是同一函數(shù);

試題詳情

2、  求函數(shù)的解析式的方法一般有:待定系數(shù)法、換元法,在已知表達(dá)式比較簡(jiǎn)單時(shí)可以用拼湊法求解.

試題詳情

3、  用賦值法處理抽象函數(shù)(即表達(dá)式不知道的函數(shù))是一種常見(jiàn)方法.

五、能力測(cè)試:                           姓名              得分          

試題詳情

1、某運(yùn)動(dòng)的速度曲線如右圖,從以下的運(yùn)動(dòng)中選出一種,其速度變

化最符合圖中的曲線…………………………………………(    )

 (A)  釣魚(yú)    (B)跳高    (C)100米跑   (D)擲標(biāo)槍

試題詳情

2、點(diǎn)A(x,y)在曲線y=log2(x+1)上運(yùn)動(dòng)時(shí),點(diǎn)B()在曲線y= 

試題詳情

上運(yùn)動(dòng),則=                   .

試題詳情

3、函數(shù)y=的圖象關(guān)于直線x=-1對(duì)稱(chēng),且x∈(0,+∞)時(shí),=,那么x∈(-∞,-2)時(shí)=            .

試題詳情

4、設(shè)函數(shù)f(x)的定義域?yàn)镽且滿足x1≠x2則f(x1)≠f(x2),又對(duì)任何實(shí)數(shù)x、y總有:f(xy)=f(x) f(y),證明:⑴f(0)=1   ⑵f(x)>0恒成立.

 

 

 

 

 

 

 

 

試題詳情

5、對(duì)一切非0實(shí)數(shù)x、y滿足:f(xy)=f(x) f(y)

⑴求證:f(1)=f(-1)=0

⑵判斷f(x)的奇偶性

試題詳情

⑶如果f(x)在(0,+)上遞增,解不等式

 

 

 

 

 

 

 

 

 

 

試題詳情

6、對(duì)任意實(shí)數(shù)x,若y=f(x)是y=2-x2和y=x這兩個(gè)函數(shù)中的較小者,求函數(shù)y=f(x)的解析式.

 

 

 

 

 

 

試題詳情

2.9  函數(shù)的圖象

〖考綱要求〗能利用函數(shù)的性質(zhì)與圖象的對(duì)稱(chēng)性描繪簡(jiǎn)單函數(shù)的圖象

〖復(fù)習(xí)要求〗掌握用描點(diǎn)法和圖象變換法描繪函數(shù)的草圖,能利用函數(shù)圖象解決有關(guān)問(wèn)題.

〖復(fù)習(xí)建議〗記住基本初等函數(shù)的圖象特征,能利用函數(shù)圖象研究函數(shù)的定義域、值域、單調(diào)性、奇偶性、周期性、對(duì)稱(chēng)性以及一些特殊函數(shù)值等,掌握函數(shù)圖象的三種基本變換:平移變換、對(duì)稱(chēng)變換、伸縮變換,要能運(yùn)用數(shù)形結(jié)合的思想方法解決有關(guān)問(wèn)題(討論函數(shù)的性質(zhì)、確定方程解的個(gè)數(shù)、解不等式……)

〖雙基回顧〗

試題詳情

1、將函數(shù)的圖象平移a個(gè)單位,求所得的函數(shù)解析式:

⑴向右平移                   ⑵向左平移               

⑶向上平移                   ⑷向下平移             

試題詳情

2、函數(shù)的圖象關(guān)于下列元素對(duì)稱(chēng)的圖象對(duì)應(yīng)函數(shù)解析式:

⑴x軸                ⑵y軸                ⑶原點(diǎn)                

⑷直線y=x                 ⑸直線y+x=0                    .

試題詳情

3、將函數(shù)的圖象向左平移一個(gè)單位得C1,再作C1關(guān)于y軸的對(duì)稱(chēng)曲線C2,將C2向下平移兩個(gè)單位得C3,作C3關(guān)于直線y=x的對(duì)稱(chēng)曲線C4,那么C4的方程為           .

試題詳情

4、下列函數(shù),分別對(duì)應(yīng)四個(gè)圖象,其中解析式與圖象對(duì)應(yīng)錯(cuò)誤的是…………………………(    )

 

 

 

 

 

試題詳情

*5、函數(shù)圖象的對(duì)稱(chēng)中心為                .

試題詳情

一、典型例題分析:

1、函數(shù)與函數(shù)的圖象關(guān)于……………………………………(    )對(duì)稱(chēng)

 (A)x軸             (B)y軸             (C)直線x=a            (D)直線y=a.

試題詳情

2、方程2x+x3=0的實(shí)數(shù)解的個(gè)數(shù)為………………………………………………………………(    )

  (A)0               (B)1               (C)2                   (D)3

試題詳情

3、作下列函數(shù)的圖象,并且根據(jù)圖象說(shuō)出其單調(diào)區(qū)間

試題詳情

                 ⑵y=x(|x|-2)                  ⑶y=|x-1|+|2x+3|

 

 

 

 

 

 

 

試題詳情

4、討論方程的實(shí)數(shù)根的個(gè)數(shù).

 

 

 

 

 

 

試題詳情

*5、函數(shù)

試題詳情

⑴求使為整數(shù)的所有整數(shù)x的值.

⑵如果圓心在原點(diǎn)的圓與函數(shù)的圖象有三個(gè)交點(diǎn),求此圓的半徑.

試題詳情

⑶求的最大值.

 

 

 

 

 

 

 

 

試題詳情

二、課堂練習(xí):

1、判斷下列命題是否正確:

(1)奇函數(shù)的圖象一定過(guò)原點(diǎn);       (2)函數(shù)y=f(x)的圖象與函數(shù)x=f(y)的圖象關(guān)于直線y=x對(duì)稱(chēng);

(3)若函數(shù)f(x)=f(-x),則f(x)的圖象關(guān)于y軸對(duì)稱(chēng);    (4)y=f(x)圖象與y=-f(x)圖象關(guān)于x軸對(duì)稱(chēng)

試題詳情

2、函數(shù)=log2|ax-1|的圖象關(guān)于直線x=2對(duì)稱(chēng),那么實(shí)數(shù)a=           .

試題詳情

3、函數(shù)y=的圖象過(guò)點(diǎn)(0,1),則函數(shù)的反函數(shù)的圖象一定經(jīng)過(guò)…………(    )

   (A)(4,-1)      (B)(1,-4)      (C)(-4,1)      (D)(1,4)

試題詳情

4、 函數(shù)y=的圖象如下,那么下列對(duì)應(yīng)錯(cuò)誤的是…………………………………………(    )

 

 

試題詳情

y=-

 

 

試題詳情

三、課堂小結(jié):

1、圖象是數(shù)的另一種反映形式,在數(shù)學(xué)中有著極其重要的作用.

試題詳情

2、掌握好圖象問(wèn)題的關(guān)鍵是:熟悉基本函數(shù)的圖象、掌握一些常見(jiàn)的結(jié)論.

試題詳情

3、作函數(shù)圖象的步驟是:化簡(jiǎn)、找限制條件、作圖.

試題詳情

4、在學(xué)習(xí)中仔細(xì)揣摩如何把方程、不等式的問(wèn)題轉(zhuǎn)化為圖象問(wèn)題來(lái)處理.

試題詳情

四、能力測(cè)試:                             姓名              得分     

1、將的圖象…………………………………………………………………………………… (   )

(A) 先向上平行移動(dòng)一個(gè)單位                       (B) 先向右平行移動(dòng)一個(gè)單位    

(C) 先向左平行移動(dòng)一個(gè)單位                       (D) 先向下平行移動(dòng)一個(gè)單位    

試題詳情

再作關(guān)于直線y=x對(duì)稱(chēng)的圖象,可得到函數(shù)的圖象.

試題詳情

2、y=f(x+1)-1的圖象可由函數(shù)y=f(x)的圖象經(jīng)過(guò)下述哪一種變換得到………………………… (   )

(A) 向左再向上各平行移動(dòng)一個(gè)單位式各樣          (B) 向左再向下各平行移動(dòng)一個(gè)單位   

(C) 向右再向上各平行移動(dòng)一個(gè)單位                (D) 向右再向下各平行移動(dòng)一個(gè)單位

試題詳情

3、函數(shù)y=f(x)的圖象與一條直線x=a有交點(diǎn)個(gè)數(shù)是………………………………………………… (   )

(A)至少有一個(gè)           (B) 至多有一個(gè)          (C) 必有一個(gè)        (D) 有一個(gè)或兩個(gè)

試題詳情

4、在同一直角坐標(biāo)系中, 圖象是同一條曲線的是………………………………………………… (   )

試題詳情

(A)                        (B)

試題詳情

(C)                        (D)

試題詳情

5、方程的解的個(gè)數(shù)………………………………………………………(     )

(A)0個(gè)                 (B) 1個(gè)                  (C) 2個(gè)             (D) 無(wú)法確定

試題詳情

6、方程與mx+ny=1在同一坐標(biāo)系內(nèi)的圖象為……………………………………(    )

 

 

 

 

 

試題詳情

7、函數(shù)y=f(x)與函數(shù)y=f(ax)的定義域都為R,這兩個(gè)函數(shù)圖象之間…………………………(    )

試題詳情

(A)關(guān)于y軸對(duì)稱(chēng)   (B)關(guān)于直線x=a對(duì)稱(chēng)   (C)關(guān)于直線x=對(duì)稱(chēng)  (D) 關(guān)于直線x=2a對(duì)稱(chēng)

試題詳情

8、函數(shù)y= f(x)的圖象關(guān)于直線x=1對(duì)稱(chēng),當(dāng)x≤1時(shí),f(x) =x2+1,則x>1時(shí),f(x)=        .

試題詳情

9、y=滿足,且=0有且只有17個(gè)根,則這些實(shí)數(shù)根的和為         .

試題詳情

*10、方程sinx=lgx的實(shí)根個(gè)數(shù)是               .

試題詳情

11、定義在R上的奇函數(shù)y=f(x)滿足當(dāng)x<0時(shí),f(x)=x+1,解不等式:f(x-1)<0

 

 

 

 

 

 

 

 

試題詳情

2.10  函數(shù)應(yīng)用問(wèn)題

〖考綱要求〗會(huì)建立目標(biāo)函數(shù)解決有關(guān)實(shí)際問(wèn)題.

〖復(fù)習(xí)建議〗在熟練掌握一次函數(shù)、二次函數(shù)、冪函數(shù)、指數(shù)與對(duì)數(shù)函數(shù)的基礎(chǔ)上,能把一些生活問(wèn)題轉(zhuǎn)化為對(duì)應(yīng)的函數(shù)問(wèn)題,并且能用不等式等數(shù)學(xué)知識(shí)解決具體的數(shù)學(xué)問(wèn)題.

試題詳情

一、典型例題分析:

1.某商人如果將進(jìn)貨單價(jià)為8元的商品按每件10元售出時(shí),每天可售出100件.現(xiàn)在他采用提高售出價(jià),減少進(jìn)貨量的辦法增加利潤(rùn),已知這種商品每件提價(jià)1元,其銷(xiāo)售量就要減少10件,問(wèn)他將售出價(jià)定為多少元時(shí),才能使每天所賺得的利潤(rùn)最大?并求出最大利潤(rùn)..

 

 

 

 

 

 

 

 

 

試題詳情

2.政府收購(gòu)某種農(nóng)產(chǎn)品的原價(jià)格為每擔(dān)200元,其中征稅率標(biāo)準(zhǔn)為100元征10元(稱(chēng)稅率為10個(gè)百分點(diǎn),即10%),并計(jì)劃收購(gòu)a萬(wàn)擔(dān).為了減輕農(nóng)民的負(fù)擔(dān),現(xiàn)決定將稅率降低x個(gè)百分點(diǎn),預(yù)計(jì)收購(gòu)量可增加2x個(gè)百分點(diǎn).

  (1)寫(xiě)出稅收yx的函數(shù)關(guān)系;

試題詳情

(2)要使此項(xiàng)稅收在稅率調(diào)節(jié)后不低于原計(jì)劃稅收的83.2%,試確定x的取值范圍.

 

 

 

 

 

 

 

 

 

 

試題詳情

3.某商場(chǎng)銷(xiāo)售甲種商品所獲利潤(rùn)P(萬(wàn)元)以及銷(xiāo)售乙種商品所獲利潤(rùn)Q(萬(wàn)元)與投入資金x(萬(wàn)元)的關(guān)系分別為,,現(xiàn)在該商場(chǎng)準(zhǔn)備用3萬(wàn)元資金經(jīng)營(yíng)這兩種商品.試問(wèn),應(yīng)該對(duì)甲,乙兩種商品分別投入多少資金,才能使經(jīng)營(yíng)這兩種商品的總利潤(rùn)最大,并求這總利潤(rùn)是多少萬(wàn)元?.

 

 

 

 

 

 

試題詳情

4、某工廠今年1、2、3月生產(chǎn)產(chǎn)品1萬(wàn)件、1.2萬(wàn)件、1.3萬(wàn)件,為了估計(jì)以后每個(gè)月的產(chǎn)量,以這三個(gè)月的產(chǎn)量為依據(jù),用一個(gè)函數(shù)模擬該產(chǎn)品的月產(chǎn)量y與月份數(shù)x的關(guān)系,模擬函數(shù)可以選用二次函數(shù)或者函數(shù)y=a?bx+c,如果已知4月份產(chǎn)量為1.37萬(wàn)件,問(wèn)用以上哪一個(gè)函數(shù)模擬比較好,理由是什么?

 

 

 

 

 

 

 

 

 

 

試題詳情

二、課堂練習(xí):

1、一個(gè)高為H,水量為V的魚(yú)缸的軸截面如圖,其底部有一個(gè)洞,滿缸水從洞中流出,如果水深為h時(shí)水的體積為v,則函數(shù)的大致圖象是……………………………………………(    )

 

 

 

 

 

試題詳情

試題詳情

2、如圖,花壇水池中央有一噴泉,水管OP=1米,水從噴頭P噴出后呈拋物線狀,先向上至最高點(diǎn)后落下,如果最高點(diǎn)距離水面2米,P距離拋物線對(duì)稱(chēng)軸1米,則在水池直徑的下列可選值中,最合算的是……………(    )

試題詳情

(A)2.5m         (B)4m        (C)5m        (D)6m

 

試題詳情

3、擬定從甲地到已地通話m分鐘的電話費(fèi)由給出,其中m>0,[m]表示不大于m的最小正整數(shù),那么從甲地到已地通話5.5分鐘的話費(fèi)為……………………(    )

試題詳情

(A)3.71         (B)3.97        (C)4.24       (D)4.77

 

 

試題詳情

   4、有一面足夠長(zhǎng)的墻,現(xiàn)用一36米長(zhǎng)的籬笆圍成如圖所示的四個(gè)面積相等的豬圈,那么豬圈的最大總面積為                   .

 

 

解應(yīng)用題的基本步驟是:

試題詳情

三、課堂小結(jié):

3、分步寫(xiě)出各個(gè)量的關(guān)系.               4、建立目標(biāo)函數(shù).

試題詳情

5、解決并且回答實(shí)際問(wèn)題.

試題詳情

四、能力測(cè)試:                      姓名                   得分       

1、某種商品零售價(jià)2001年比2000年上漲25%,欲控制2002年比2000年只上漲20%,則2002年應(yīng)比2001年降價(jià)…………………………………………………………………………………  (   )

(A)10%           (B)4%           (C)5%            (D)8%

全月應(yīng)納稅所得額

稅率

不超過(guò)500元部分

5%

超過(guò)500元至2000元的部分

10%

超過(guò)2000元至5000元的部分

15%

試題詳情

2、《中華人民共和國(guó)個(gè)人所得稅法》規(guī)定,公民全月工資、

薪金所得不超過(guò)800元的部分不必納稅,超過(guò)800元的 

部分為全月應(yīng)納稅所得額,此項(xiàng)稅款按右表分段計(jì)算.

試題詳情

  某人一月份交納此項(xiàng)稅款26.28元,則他的當(dāng)月工資、 

薪金所得介于………………………………………(   )

(A)800~900元     (B)900~1200元    (C)1200~1500元   (D)1500~2800元

試題詳情

3、某集鎮(zhèn)近20年常住人口y(千人)與時(shí)間x(年)

之間的函數(shù)關(guān)系如右圖.考慮下列說(shuō)法:

①前16年的常住人口是逐年增加的;

②第16年后常住人口實(shí)現(xiàn)零增長(zhǎng);

③前8年的人口增長(zhǎng)率大于1;

試題詳情

④第8年到第16年的人口增長(zhǎng)率小于1.

在上述四種說(shuō)法中,錯(cuò)誤說(shuō)法的序號(hào)是           .

試題詳情

4、生產(chǎn)某種商品x噸,所需的費(fèi)用為(元),而出售x噸這種商品時(shí),每噸的售價(jià)為P元,這里P依關(guān)系式(a,b為常數(shù))而定.如果生產(chǎn)出來(lái)的這種產(chǎn)品都能賣(mài)完,那么當(dāng)產(chǎn)量是150噸時(shí),所獲利潤(rùn)最大,并且這時(shí)每噸的價(jià)格為40元,求ab的值.

 

 

 

 

 

試題詳情

5、(2003廣東考題)在某海濱城市附近海面有一臺(tái)風(fēng),根據(jù)監(jiān)測(cè),當(dāng)前臺(tái)風(fēng)中心位于城市O(如圖)的東偏南)方向300km的海面P處,并且以20km/h的速度向西偏北45°方向移動(dòng),臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60km,并且以10km/h的速度不斷增大,問(wèn)幾個(gè)小時(shí)后,該城市開(kāi)始受到臺(tái)風(fēng)的侵襲?

 

試題詳情

試題詳情

6、為了保護(hù)環(huán)境,實(shí)施城市綠化,某公司要在拆遷地長(zhǎng)方形ABCD上規(guī)劃出一塊長(zhǎng)方形地面建造公園,公園的一邊落在CD上,但是公園占地不能越過(guò)文物保護(hù)區(qū)域△AEF的紅線EF ,已知AB=CD=200m,BC=AD=160m,AF=60m,AE=40m,問(wèn)如何設(shè)計(jì)才能使公園占地面積最大?并求出最大面積.

 

 

 

函數(shù)單元測(cè)試

姓名             得分     

試題詳情

一、選擇題:

1、集合A={x|x2=1},集合B={x|ax=1},如果BA,那么a=………………………………………(    )

(A)1                (B)-1              (C)±1               (D)0,±1

試題詳情

2、=x2-5x+4,,那么………………………………………………(    )

(A) x2-7x+10      (B) x2+7x-10        (C) x2-3x            (D) x2-4x+6

試題詳情

3、函數(shù)的奇偶性為…………………………………………………………(    )

(A)奇函數(shù)          (B)偶函數(shù)            (C) 非奇非偶函數(shù)     (D)又奇又偶函數(shù)

試題詳情

4、對(duì)任意實(shí)數(shù)x,不等式:恒成立,則實(shí)數(shù)a的取值范圍是………………(    )

試題詳情

(A)0<a<1         (B) a>            (C) 0<a<          (D) a<

試題詳情

5、函數(shù)y=的單調(diào)遞減區(qū)間是…………………………………………………(    )

(A)(-∞,1]      (B) (-∞,-3)    (C)[-1,∞)         (D)(-3,1]

試題詳情

6、函數(shù)為奇函數(shù),當(dāng)x>0時(shí),=+1,那么當(dāng)x<0時(shí), 的表達(dá)式為………(    )

試題詳情

(A)+1         (B) ―+1      (C) ― 1         (D)―― 1

試題詳情

7、如果函數(shù)在R上是減函數(shù),那么函數(shù)的遞增區(qū)間是………………………(    )

試題詳情

(A)          (B)          (C)            (D)

試題詳情

8、與函數(shù)=圖象相同的函數(shù)是………………………………………………………(    )

試題詳情

(A)y=x-1           (B) y=|x-1|         (C)         (D)

試題詳情

9、如果函數(shù)y=ax2-2ax-2的最大值不大于2,則實(shí)數(shù)a的取值范圍是…………………………(    )

(A)a=0                                (B) a≥-4          

(C) -4≤a<0                          (D)-4≤a≤0

試題詳情

10、已知關(guān)于x的方程:2x=x2解的個(gè)數(shù)為…………………………………………………………(    )

(A)1               (B)2                (C)3                  (D) 4

試題詳情

11、函數(shù)y=ax+b與它的反函數(shù)是同一函數(shù),則…………………………………………………(    )

(A)a=1,b=0                            (B) a=-1,b=0     

(C) a=±1,b=0                         (D) a=1,b=0或者a=-1,b∈R

試題詳情

12、某廠有甲原料360千克,乙原料290千克,計(jì)劃用它們生產(chǎn)A、B兩種產(chǎn)品共計(jì)50件,已知生產(chǎn)一件A需要甲原料9千克、乙原料3千克,可獲得利潤(rùn)700元,生產(chǎn)一件B需要原料甲4千克,原料乙10千克,可獲得利潤(rùn)1200元,為了使利潤(rùn)最大,應(yīng)該安排生產(chǎn)產(chǎn)品A、B的件數(shù)為(    )

(A)20,30             (B) 25,25            (C) 30,20           (D) 32,18

試題詳情

二、填空題:

13、已知函數(shù)=并且=10,那么x=             .

試題詳情

14、函數(shù)的奇偶性是            .

試題詳情

15、已知f(x)=2x+b的反函數(shù)為,如果y=的圖形經(jīng)過(guò)點(diǎn)Q(5,2),那么b=       .

試題詳情

16、函數(shù)的圖象關(guān)于直線x=2對(duì)稱(chēng),那么a=              .

試題詳情

三、解答題:

17、在如圖所示的直角坐標(biāo)系中,一個(gè)運(yùn)動(dòng)物體經(jīng)過(guò)點(diǎn)A(0,9),其軌跡方

程為y=ax2+c (a<0),D=(6,7)為x軸上的給定開(kāi)區(qū)間.

⑴為使物體落在D內(nèi),求a的取值范圍;

試題詳情

⑵如果物體運(yùn)動(dòng)時(shí)又經(jīng)過(guò)點(diǎn)P(2,8.1),問(wèn)它能否落在D內(nèi),為什么?

 

 

 

 

 

 

 

 

 

 

 

試題詳情

18、設(shè)A={x|x2-x-2>0},B={x|x2+4x+p<0,如果BA,求實(shí)數(shù)p的取值范圍.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

19、已知函數(shù)=(a-1)x2+(a+2)x+3

試題詳情

⑴求函數(shù)y=的表達(dá)式,使其圖象關(guān)于直線x=1對(duì)稱(chēng).

試題詳情

⑵當(dāng)a≠1時(shí),求證函數(shù)y=的圖象經(jīng)過(guò)兩個(gè)定點(diǎn)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

文本框: 月份	2月	3月	4月	5月	6月
銷(xiāo)售價(jià)x(元/件)	650	675	725	765	800
銷(xiāo)售量y	350	322	276	234	200

20、某公司今年初推出一種新產(chǎn)品,每件產(chǎn)品成本價(jià)為452元,經(jīng)過(guò)市場(chǎng)2~6月份調(diào)查,其銷(xiāo)售價(jià)與銷(xiāo)售量的關(guān)系為:

由此可以看出,銷(xiāo)售量y件與銷(xiāo)售價(jià)x(元/

件)之間近似的看成一次函數(shù)的關(guān)系.

(1)以首末兩組數(shù)據(jù)為依據(jù)求得y與x之間的 

函數(shù)關(guān)系.

(2)為了獲得最大利潤(rùn),銷(xiāo)售價(jià)應(yīng)該定為多少?此時(shí)月利潤(rùn)為多少?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

21、已知函數(shù)

⑴求此函數(shù)的定義域、值域

⑵判斷此函數(shù)的單調(diào)性并證明

試題詳情

⑶解不等式:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

22、設(shè)二次函數(shù)=x2+bx+c(b、c是實(shí)數(shù)),已知不論,為何實(shí)數(shù),恒有:

試題詳情

f(sin)≥0,f(2+cos)≤0.

⑴求證:b+c=-1;

試題詳情

⑵如果函數(shù)f(sinx)的最大值為8,求的解析式.

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情


同步練習(xí)冊(cè)答案