f(sin)≥0.f(2+cos)≤0.⑴求證:b+c=-1, 查看更多

 

題目列表(包括答案和解析)

已知橢圓C=1(a>b>0)的離心率為,過右焦點(diǎn)F且斜率為1的直線交橢圓CA,B兩點(diǎn),N為弦AB的中點(diǎn)。

(1)求直線ONO為坐標(biāo)原點(diǎn))的斜率KON ;

(2)對(duì)于橢圓C上任意一點(diǎn)M ,試證:總存在角∈R)使等式:cossin成立。w.w.w.k.s.5.u.c.o.m

查看答案和解析>>

已知橢圓C=1(a>b>0)的離心率為,過右焦點(diǎn)F且斜率為1的直線交橢圓CA,B兩點(diǎn),N為弦AB的中點(diǎn)。

(1)求直線ONO為坐標(biāo)原點(diǎn))的斜率KON ;

(2)對(duì)于橢圓C上任意一點(diǎn)M ,試證:總存在角∈R)使等式:cossin成立。

查看答案和解析>>

設(shè)二次函數(shù)f(x)=x2+bx+c(b,c∈R),已知不論α,β為何實(shí)數(shù),恒有f(sinα)≥0,且f(2+cosβ)≤0.

(1)求證:b+c=-1;

(2)求c的取值范圍;

(3)若函數(shù)f(sinα)的最大值為8,求b,c的值.

查看答案和解析>>

設(shè)二次函數(shù)f(x)=x2+bx+c(b,c∈R),已知不論α、β為何實(shí)數(shù),恒有f(sinα)≥0和f(2+cosβ)≤0.

(1)求證:b+c=-1;

(2)求證:c≥3;

(3)若函數(shù)f(sinα)的最大值為8,求b、c的值.

查看答案和解析>>

設(shè)二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R),已知不論α,β為何實(shí)數(shù)恒有f(sinα)≥0和f(2+cosβ)≤0.

(Ⅰ)求f(1)的值;

(Ⅱ)求證:c≥3a;

(Ⅲ)若a>0,函數(shù)f(sinα)的最大值為8,求b的值.

查看答案和解析>>


同步練習(xí)冊(cè)答案