作PM⊥平面,垂足為M,作QN⊥平面,垂足為N,則PM∥QN,M、N分別是正△ABD與正△BCD的中心,從而點(diǎn)A、M、E、N、C共線,PM與QN確定平面PACQ,且PMNQ為矩形. …………6分
(Ⅰ)求證:PQ⊥BD;
(Ⅱ)求二面角P-BD-Q的余弦值;
(Ⅲ)求點(diǎn)P到平面QBD的距離.
解:(Ⅰ)由P-ABD,Q-CBD是相同正三棱錐,可知△PBD與△QBD是全等等腰三角形 …1分
取BD中點(diǎn)E,連結(jié)PE、QE,則BD⊥PE,BD⊥QE.故BD⊥平面PQE,從而BD⊥PQ. ………4分
(Ⅱ)由(1)知∠PEQ是二面角P-BD-Q的平面角 ……………………5分
32、(廣東省湛江師范學(xué)院附中2009年高考模擬試題)如圖,某建筑物的基本單元可近似地按以下方法構(gòu)作:先在地平面內(nèi)作菱形ABCD,邊長為1,∠BAD=60°,再在的上方,分別以△與△為底面安裝上相同的正棱錐P-ABD與Q-CBD,∠APB=90°.
在Rt△PEF中,EG=為所求……………………………… (12分)
∵CD側(cè)面PCD,AB側(cè)面PCD,∴AB//側(cè)面PCD
取CD中點(diǎn)F,連EF、PF,則EF⊥AB
又∵PE⊥AB,∴AB⊥平面PEF
又∵AB//CD,∴CD⊥平面PEF,∴平面PCD⊥平面PEF…………………(10分)
作EG⊥PF,垂足為G,則EC⊥平面PCD
在Rt△PEC中,∠PCE=45°為所求…………………………………………(8分)
(3)解:在矩形ABCD中,AB//CD
又∵BC側(cè)面PBC,∴側(cè)面PAB⊥側(cè)面PBC………………… (4分)
(2)解:取AB中點(diǎn)E,連結(jié)PE、CE
又∵△PAB是等邊三角形,∴PE⊥AB
又∵側(cè)面PAB⊥底面ABCD,∴PE⊥面ABCD
∴∠PCE為側(cè)棱PC與底面ABCD所成角………………………………………(6分)
31、(河南省實(shí)驗(yàn)中學(xué)2008-2009學(xué)年高三第一次月考)如圖,四棱錐P―ABCD的底面是AB=2,BC=的矩形,側(cè)面PAB是等邊三角形,且側(cè)面PAB⊥底面ABCD.
(1)證明:側(cè)面PAB⊥側(cè)面PBC;
(2)求側(cè)棱PC與底面ABCD所成的角;
(3)求直線AB與平面PCD的距離.
(1)證明:在矩形ABCD中,BC⊥AB
又∵面PAB⊥底面ABCD側(cè)面PAB∩底面ABCD=AB,∴BC⊥側(cè)面PAB…(2分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com