江蘇省海門實驗學(xué)校2009屆高三年級雙周考

數(shù) 學(xué) 試 卷

                                                 

一、填空題:(每題5分,共70分.把正確答案寫在答卷相應(yīng)位置上)

1.集合S={1,2,3,4,5,6},A是S的一個子集,當(dāng)xA時,若x-1A,x+1A,則稱x為A的一個“孤立元素”,那么S中無“孤立元素”的4元子集的個數(shù)是            .

試題詳情

2.已知函數(shù)的定義域為,且,則              .

試題詳情

3.若的值是         .

試題詳情

4.已知定義在實數(shù)集上的偶函數(shù)在區(qū)間上是單調(diào)增函數(shù),則不等式的解集為                

試題詳情

5.將下面不完整的命題補充完整,并使之成為一個真命題:若函數(shù)的圖象與函數(shù)的圖象關(guān)于         對稱,則函數(shù)的解析式為         (填上你認(rèn)為可以成為真命題的一種情形,不必考慮所有情形).

試題詳情

6.判斷的正負(fù)             .

試題詳情

7.已知是定義域為的奇函數(shù),在區(qū)

試題詳情

上單調(diào)遞增,當(dāng)時,的圖像如右圖所示:

試題詳情

若:,則的取值范圍是          .

試題詳情

8.已知t為常數(shù),函數(shù)在區(qū)間[0,3]上的最大值為2,則t=     __ .

試題詳情

9.已知,

試題詳情

的最大值為   _______________.

試題詳情

10.直線與函數(shù)的圖像有相異的三個公共點,則的取值范圍是__. 

試題詳情

11.若對任意的正實數(shù)x成立,

試題詳情

        ___.

試題詳情

12.已知函數(shù)的定義域為R,;若對都有;則的取值范圍是      ___.

試題詳情

13.13.對于在區(qū)間上有意義的兩個函數(shù),如果對任意,均有, 那么我們稱上是接近的.若在閉區(qū)間上是接近的,則的取值范圍是           

試題詳情

 14.fx)是定義在(0,+∞)上的非負(fù)可導(dǎo)函數(shù),且滿足,對任意正數(shù)a、b,若ab,則的大小關(guān)系為              .

 

試題詳情

二、解答題(共90分.解答應(yīng)寫出文字說明、證明過程或演算步驟.)

15.(本題滿分14分)設(shè)命題p:函數(shù)的定義域為R;

試題詳情

命題q:不等式對一切正實數(shù)均成立

試題詳情

(1)如果p是真命題,求實數(shù)的取值范圍;

試題詳情

(2)如果命題“p或q”為真命題且“p且q”為假命題,求實數(shù)的取值范圍。

 

試題詳情

16.(本小題滿分16分).( 本小題滿分16分) 已知函數(shù)

試題詳情

(1)求函數(shù)的圖像在處的切線方程;

試題詳情

(2)求的最大值;

試題詳情

(3) 設(shè)實數(shù),求函數(shù)上的最小值

 

試題詳情

17.(本小題滿分14分).已知函數(shù)的定義域為R,對任意實數(shù)滿足,且

試題詳情

(1)求;

試題詳情

(2)試用表示;

試題詳情

(3)用,的表達(dá)式來表示

試題詳情

18.(本小題滿分16分)已知函數(shù)滿足

試題詳情

其中

試題詳情

(1)求函數(shù)的解析式,并判斷其奇偶性單調(diào)性;

試題詳情

(2)對于函數(shù),當(dāng)時,,求實數(shù)的取值范圍;

試題詳情

(3)當(dāng)時,的值恒為負(fù)數(shù),求的取值范圍.

 

 

試題詳情

19.(本小題滿分14分) 某民營企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位:萬元)

(1)分別將A、B兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式,并寫出它們的函數(shù)關(guān)系式;

(2)該企業(yè)已籌集到10萬元資金,并全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤約為多少萬元(精確到1萬元).

試題詳情

     

     

     

     

     

     

     

     

    試題詳情

    20.(本小題滿分16分). 已知二次函數(shù)直線(其中t為常數(shù));.若直線與函數(shù)的圖象以及,y軸與函數(shù)的圖象所圍成的封閉圖形如陰影所示.

    (Ⅰ)求a、b、c的值;

    試題詳情

    (Ⅱ)求陰影面積S關(guān)于t的函數(shù)的解析式;

    試題詳情

    (Ⅲ)若問是否存在實數(shù)m,使得   

    試題詳情

    的圖象與的圖象有且只有兩個不同的交點?若

    存在,求出m的值;若不存在,說明理由.

     

     

    江蘇省海門實驗學(xué)校2009屆高三年級雙周考 (答案)

    試題詳情

    1. 6    2.     3.    4.   5.  y軸,

    試題詳情

    6.正數(shù)    7.    8. 1    9.6    10.(-2,2)    11.2009

    試題詳情

    12.[12,13   13.   

    試題詳情

    14.設(shè),則,故為增函數(shù),由ab,

    試題詳情

    試題詳情

    15. (1)恒成立

    試題詳情

    (2)

    試題詳情

    16.解(1)定義域為                          1分

    試題詳情

                                                         3分

    試題詳情

                                                             4分

    試題詳情

           又                                           5分

    試題詳情

      函數(shù)的在處的切線方程為:

    試題詳情

    ,即                               6分

    試題詳情

    (2)令

    試題詳情

    當(dāng)時,,上為增函數(shù)              8分

    試題詳情

    當(dāng)時,,在上為減函數(shù)                10分

    試題詳情

                                               12分

    試題詳情

    (3),由(2)知:

    試題詳情

    上單調(diào)遞增,在上單調(diào)遞減。

    試題詳情

    上的最小值           13分

    試題詳情

                                            14分

    試題詳情

    當(dāng)時,         15分

    試題詳情

    當(dāng),           16分

     

    試題詳情

    17.(1)利用賦值法易得

    試題詳情

    (2)令,由條件,得,所以

    試題詳情

    (3)設(shè),由條件,得,

    試題詳情

    所以

     

    試題詳情

    18.(1)解:由,

    試題詳情

    .     ………………2分

    試題詳情

    設(shè)

    試題詳情

                            =<0(討論a>1和0<a<1),

    得f(x)為R上的增函數(shù).                                   ………………5分

    試題詳情

    (2)由,     …………7分

    試題詳情

    ,        ………………9分

    試題詳情

    得1<m<.                                          ………………10分

    試題詳情

    (3)f(x)在R上為增函數(shù))f(x) 當(dāng)時)f(x)-4的值恒為負(fù)數(shù),  ………13分

    試題詳情

    而f(x)在R上單調(diào)遞增得f(2)-40,                     ………………15分

    試題詳情

    19.解:(1)設(shè)投資為x萬元,A產(chǎn)品的利潤為 f (x) 萬元,B產(chǎn)品的利潤為 g (x) 萬元.

    試題詳情

    由題設(shè)

    試題詳情

    由圖知

    試題詳情

    (2)設(shè)A產(chǎn)品投入x萬元,則B產(chǎn)品投入10-x萬元;設(shè)企業(yè)利潤為y萬元。

    試題詳情

    ,

    試題詳情

    試題詳情

    試題詳情

    答:當(dāng)A產(chǎn)品投入3.75萬元,B產(chǎn)品投入6.25萬元時,企業(yè)獲得最大利潤約4萬元。

    試題詳情

    20.解:(I)由圖形知:

    試題詳情

    ∴函數(shù)的解析式為

    試題詳情

    (Ⅱ)由

    試題詳情

       ∵0≤t≤2

    試題詳情

    ∴直線l1的圖象的交點坐標(biāo)為(

    由定積分的幾何意義知:

    試題詳情

    試題詳情

    試題詳情

     

    試題詳情

    (Ⅲ)令

    試題詳情

    因為x>0,要使函數(shù)與函數(shù)有且僅有2個不同的交點,則函數(shù)

    試題詳情

    的圖象與x軸的正半軸有且只有兩個不同的交點

    試題詳情

    試題詳情

    當(dāng)x∈(0,1)時,是增函數(shù);

    試題詳情

    當(dāng)x∈(1,3)時,是減函數(shù)

    試題詳情

    當(dāng)x∈(3,+∞)時,是增函數(shù)

    試題詳情

    當(dāng)x=1或x=3時,

    試題詳情

    試題詳情

    又因為當(dāng)x→0時,

    試題詳情

    當(dāng)

    試題詳情

    所以要使有且僅有兩個不同的正根,必須且只須

    試題詳情

    試題詳情

    ,

    試題詳情

    ∴m=7或

    試題詳情

    ∴當(dāng)m=7或時,函數(shù)與函數(shù)的圖象有且只有兩個不同交點.

     

    試題詳情


    同步練習(xí)冊答案