題目列表(包括答案和解析)
(本小題滿分16分)某連鎖分店銷售某種商品,每件商品的成本為4元,并且每件商品需向總店交a元(1≤a≤3)的管理費,預計當每件商品的售價為元(8≤x≤9)時,一年的銷售量為(10-x)2萬件.(1)求該連鎖分店一年的利潤L(萬元)與每件商品的售價x的函數(shù)關(guān)系式L(x);
(2)當每件商品的售價為多少元時,該連鎖分店一年的利潤L最大,并求出L的最大值M(a).
(本小題滿分16分)某連鎖分店銷售某種商品,每件商品的成本為4元,并且每件商品需向總店交a元(1≤a≤3)的管理費,預計當每件商品的售價為元(8≤x≤9)時,一年的銷售量為(10-x)2萬件.(1)求該連鎖分店一年的利潤L(萬元)與每件商品的售價x的函數(shù)關(guān)系式L(x);(2)當每件商品的售價為多少元時,該連鎖分店一年的利潤L最大,并求出L的最大值M(a).
(本小題滿分16分)通過研究學生的學習行為,心理學家發(fā)現(xiàn),學生的接受能力依賴于老師引入概念和描述問題所用的時間:講授開始時,學生的興趣激增;中間有一段不太長的時間,學生的興趣保持較理想的狀態(tài);隨后學生的注意力開始分散.分析結(jié)果和實驗表明,用f(x)表示學生掌握和接受概念的能力(f(x)的值越大,表示接受的能力越強),x表示提出和講授概念的時間(單位:min),可有以下的公式:
(1)講課開始后多少分鐘,學生的注意力最集中?能持續(xù)多少分鐘?
(2)講課開始后5分鐘與講課開始后25分鐘比較,何時學生的注意力更集中?
(3)一道數(shù)學難題,需要講解24分鐘,并且要求學生的注意力至少達到180,那么經(jīng)過適當安排,老師能否在學生達到所需的狀態(tài)下講授完這道題目?
(本小題滿分16分)
點,點A1(x1,0),A2(x,0),…,An(xn,0),…順次為x軸上的點,其中x1=a(0<a≤1).對于任意n∈N*,點An、Bn、An+1構(gòu)成以Bn為頂點的等腰三角形.(1)求數(shù)列{yn}的通項公式,并證明它為等差數(shù)列;(2)求證:x- x是常數(shù),并求數(shù)列{ x}的通項公式;(3)上述等腰ΔAnBnAn+1中是否可能存在直角三角形,若可能,求出此時a的值;若不可能,請說明理由.
(本小題滿分16分)已知橢圓的離心率為,過右頂點A的直線l與橢圓C相交于A、B兩點,且.
(1)求橢圓C和直線l的方程;
(2)記曲線C在直線l下方的部分與線段AB所圍成的平面區(qū)域(含邊界)為D.若曲線與D有公共點,試求實數(shù)m的最小值.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com