2.(海南卷11)已知點(diǎn)P在拋物線y2 = 4x上,那么點(diǎn)P到點(diǎn)Q(2,-1)的距離與點(diǎn)P到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)P的坐標(biāo)為
(1)會(huì)利用方程組解的狀況確定直線與圓錐曲線的位置關(guān)系;
(2)會(huì)求直線被圓錐曲線所截的弦長(zhǎng),弦的中點(diǎn)坐標(biāo):
如:設(shè)拋物線經(jīng)過(guò)兩點(diǎn)和,對(duì)稱軸與軸平行,開(kāi)口向右,直線 被拋物線截得的線段長(zhǎng)是,求拋物線方程。
(3)當(dāng)直線與圓錐曲線相交時(shí),求在某些給定條件下地直線線方程;解此類問(wèn)題,一般是根據(jù)條件求解,但要注意條件的應(yīng)用。
如:已知拋物線方程為在軸上截距為2的直線與拋物線交于兩點(diǎn),且以為徑的圓過(guò)原點(diǎn),求直線的方程。
課本題P26練習(xí)1(3)(4)3;習(xí)題2(3)(4)3,4;P30練習(xí)2(3)(4)4;
P31習(xí)題5,7,10;P34練習(xí)5,6,7;P38練習(xí)2,3;P39 習(xí)題5,6,7;P42
練習(xí)4,5;P44 習(xí)題5,6,7;P47 習(xí)題8,9,11,12,13,16,17,18,19,21;
高考題
1.(福建卷11)又曲線(a>0,b>0)的兩個(gè)焦點(diǎn)為F1、F2,若P為其上一點(diǎn),且|PF1|=2|PF2|,則雙曲線離心率的取值范圍為
(1)直接法: 已知底邊的長(zhǎng)為8,兩底角之和為,求頂點(diǎn)且的軌跡方程。
(2)定義法:已知圓,定點(diǎn),若是圓上的動(dòng)點(diǎn),的垂直平分線交 于,求的軌跡方程。
(3)幾何法:是的直徑,且,為圓上一動(dòng)點(diǎn),作,垂足為,在上取點(diǎn),使,求點(diǎn)的軌跡。
(4)相關(guān)點(diǎn)法(代人法) 在雙曲線的兩條漸近線上分別取點(diǎn)和,使(其中為坐標(biāo)原點(diǎn),為雙曲線的半焦距),求中點(diǎn)的軌跡。
(5)整體法(設(shè)而不求法):以為圓心的圓與橢圓交于兩點(diǎn),求中點(diǎn)的軌跡方程。
若平面內(nèi)一個(gè)動(dòng)點(diǎn)到一個(gè)定點(diǎn)和一條定直線的距離之比等于一個(gè)常數(shù)則動(dòng)點(diǎn)的軌跡為圓錐曲線。其中定點(diǎn)為焦點(diǎn),定直線為準(zhǔn)線,為離心率。當(dāng)時(shí),軌跡為橢圓;當(dāng)時(shí),軌跡為拋物線;當(dāng)時(shí),軌跡為雙曲線。
(1)拋物線的定義:平面內(nèi)與一個(gè)定點(diǎn)的距離等于到一條定直線的距離點(diǎn)的軌跡。
其中:定點(diǎn)為拋物線的焦點(diǎn),定直線叫做準(zhǔn)線。
(2)拋物線的標(biāo)準(zhǔn)方程、圖象及幾何性質(zhì):
|
焦點(diǎn)在軸上, 開(kāi)口向右 |
焦點(diǎn)在軸上, 開(kāi)口向左 |
焦點(diǎn)在軸上, 開(kāi)口向上 |
焦點(diǎn)在軸上, 開(kāi)口向下 |
標(biāo)準(zhǔn)方程 |
|
|
|
|
圖 形 |
|
|
|
|
頂 點(diǎn) |
|
|||
對(duì)稱軸 |
軸 |
軸 |
||
焦 點(diǎn) |
|
|
|
|
離心率 |
|
|||
準(zhǔn) 線 |
|
|
|
|
通 徑 |
|
|||
焦半徑 |
|
|
||
焦點(diǎn)弦 |
(當(dāng)時(shí),為--通徑) |
|||
焦準(zhǔn)距 |
|
(1)雙曲線的定義:平面內(nèi)與兩個(gè)定點(diǎn)的距離的差的絕對(duì)值等于常數(shù)(小于)的點(diǎn)的軌跡。
第二定義:平面內(nèi)與一個(gè)定點(diǎn)的距離和到一條定直線的距離的比是常數(shù)的點(diǎn)的軌跡。
其中:兩個(gè)定點(diǎn)叫做雙曲線的焦點(diǎn),焦點(diǎn)間的距離叫做焦距;定直線叫做準(zhǔn)線。
常數(shù)叫做離心率。
注意:與()表示雙曲線的一支。表示兩條射線;沒(méi)有軌跡;
(2)雙曲線的標(biāo)準(zhǔn)方程、圖象及幾何性質(zhì):
|
中心在原點(diǎn),焦點(diǎn)在軸上 |
中心在原點(diǎn),焦點(diǎn)在軸上 |
||
標(biāo)準(zhǔn)方程 |
|
|
||
圖 形 |
|
|
||
頂 點(diǎn) |
|
|
||
對(duì)稱軸 |
軸,軸;虛軸為,實(shí)軸為 |
|||
焦 點(diǎn) |
|
|
||
焦 距 |
|
|||
離心率 |
(離心率越大,開(kāi)口越大) |
|||
準(zhǔn) 線 |
|
|
||
漸近線 |
|
|
||
通 徑 |
(為焦準(zhǔn)距) |
|||
焦半徑 |
在左支 在右支 |
在下支 在上支 |
||
焦準(zhǔn)距 |
|
(3)雙曲線的漸近線:
①求雙曲線的漸近線,可令其右邊的1為0,即得,因式分解得到。
②與雙曲線共漸近線的雙曲線系方程是;
(4)等軸雙曲線為,其離心率為
(1)橢圓的定義:平面內(nèi)與兩個(gè)定點(diǎn)的距離的和等于常數(shù)(大于)的點(diǎn)的軌跡。
第二定義:平面內(nèi)與一個(gè)定點(diǎn)的距離和到一條定直線的距離的比是常數(shù)的點(diǎn)的軌跡。
其中:兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),焦點(diǎn)間的距離叫做焦距;定直線叫做準(zhǔn)線。
常數(shù)叫做離心率。
注意:表示橢圓;表示線段;沒(méi)有軌跡;
(2)橢圓的標(biāo)準(zhǔn)方程、圖象及幾何性質(zhì):
|
中心在原點(diǎn),焦點(diǎn)在軸上 |
中心在原點(diǎn),焦點(diǎn)在軸上 |
||
標(biāo)準(zhǔn)方程 |
|
|
||
參數(shù)方程 |
為參數(shù)) |
為參數(shù)) |
||
圖 形 |
|
|
||
頂 點(diǎn) |
|
|
||
對(duì)稱軸 |
軸,軸;短軸為,長(zhǎng)軸為 |
|||
焦 點(diǎn) |
|
|
||
焦 距 |
|
|||
離心率 |
(離心率越大,橢圓越扁) |
|||
準(zhǔn) 線 |
|
|
||
通 徑 |
(為焦準(zhǔn)距) |
|||
焦半徑 |
|
|
||
焦點(diǎn)弦 |
僅與它的中點(diǎn)的橫坐標(biāo)有關(guān) |
僅與它的中點(diǎn)的縱坐標(biāo)有關(guān) |
||
焦準(zhǔn)距 |
|
圓錐曲線部分
2.(江蘇卷18)設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過(guò)這三個(gè)交點(diǎn)的圓記為C.求:
(Ⅰ)求實(shí)數(shù)b 的取值范圍;
(Ⅱ)求圓C 的方程;
(Ⅲ)問(wèn)圓C 是否經(jīng)過(guò)某定點(diǎn)(其坐標(biāo)與b 無(wú)關(guān))?請(qǐng)證明你的結(jié)論.
[解析]本小題主要考查二次函數(shù)圖象與性質(zhì)、圓的方程的求法.
(Ⅰ)令=0,得拋物線與軸交點(diǎn)是(0,b);
令,由題意b≠0 且Δ>0,解得b<1 且b≠0.
(Ⅱ)設(shè)所求圓的一般方程為
令=0 得這與=0 是同一個(gè)方程,故D=2,F(xiàn)=.
令=0 得=0,此方程有一個(gè)根為b,代入得出E=―b―1.
所以圓C 的方程為.
(Ⅲ)圓C 必過(guò)定點(diǎn)(0,1)和(-2,1).
證明如下:將(0,1)代入圓C 的方程,得左邊=0+1+2×0-(b+1)+b=0,右邊=0,
所以圓C 必過(guò)定點(diǎn)(0,1).
同理可證圓C 必過(guò)定點(diǎn)(-2,1).
18.(廣東卷11)經(jīng)過(guò)圓的圓心,且與直線垂直的直線
方程是 .
19已知菱形的頂點(diǎn)在橢圓上,對(duì)角線所在直線的斜率為1.
(Ⅰ)當(dāng)直線過(guò)點(diǎn)時(shí),求直線的方程;
(Ⅱ)當(dāng)時(shí),求菱形面積的最大值.
解:(Ⅰ)由題意得直線的方程為.
因?yàn)樗倪呅?sub>為菱形,所以.
于是可設(shè)直線的方程為.
由得.
因?yàn)?sub>在橢圓上,
所以,解得.
設(shè)兩點(diǎn)坐標(biāo)分別為,
則,,,.
所以.
所以的中點(diǎn)坐標(biāo)為.
由四邊形為菱形可知,點(diǎn)在直線上,
所以,解得.
所以直線的方程為,即.
(Ⅱ)因?yàn)樗倪呅?sub>為菱形,且,
所以.
所以菱形的面積.
由(Ⅰ)可得,
所以.
所以當(dāng)時(shí),菱形的面積取得最大值.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com