題目列表(包括答案和解析)
橢圓的左、右焦點分別為,一條直線經過點與橢圓交于兩點.
⑴求的周長;
⑵若的傾斜角為,求的面積.
【解析】(1)根據橢圓的定義的周長等于4a.
(2)設,則,然后直線l的方程與橢圓方程聯(lián)立,消去x,利用韋達定理可求出所求三角形的面積.
已知橢圓:.
(1)橢圓的短軸端點分別為(如圖),直線分別與橢圓交于兩點,其中點滿足,且.
①證明直線與軸交點的位置與無關;
②若∆面積是∆面積的5倍,求的值;
(2)若圓:.是過點的兩條互相垂直的直線,其中交圓于、兩點,交橢圓于另一點.求面積取最大值時直線的方程.
(本小題共13分)
已知橢圓和直線L:=1, 橢圓的離心率,直線L與坐標原點的距離為。
(1)求橢圓的方程;
(2)已知定點,若直線與橢圓相交于C、D兩點,試判斷是否存在值,使以CD為直徑的圓過定點E?若存在求出這個值,若不存在說明理由。
已知橢圓:.
(1)橢圓的短軸端點分別為(如圖),直線分別與橢圓交于兩點,其中點滿足,且.
①證明直線與軸交點的位置與無關;
②若∆面積是∆面積的5倍,求的值;
(2)若圓:.是過點的兩條互相垂直的直線,其中交圓于、兩點,交橢圓于另一點.求面積取最大值時直線的方程.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com