【題目】如圖,拋物線交軸于點(diǎn)和點(diǎn),交軸于點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)在拋物線上,且,求點(diǎn)的坐標(biāo);
(3)如圖②,設(shè)點(diǎn)是線段上的一動(dòng)點(diǎn),作軸,交拋物線于點(diǎn),是否存在面積的最大值?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)點(diǎn)的坐標(biāo)為或或或;(3)
【解析】
(1)把點(diǎn)A、C的坐標(biāo)分別代入函數(shù)解析式,列出關(guān)于系數(shù)的方程組,通過(guò)解方程組求得系數(shù)的值;
(2)設(shè)P點(diǎn)縱坐標(biāo)為,根據(jù)列出關(guān)于m的方程,解方程求出m的值,進(jìn)而得到點(diǎn)P的坐標(biāo);
(3)先運(yùn)用待定系數(shù)法求出直線AC的解析式為y=-x-4,再設(shè)Q點(diǎn)坐標(biāo)為(t,-t-4),則D點(diǎn)坐標(biāo)為(t,t+3t-4),然后用含t的代數(shù)式表示QD,根據(jù)二次函數(shù)的性質(zhì)即可求出線段QD長(zhǎng)度的最大值.
解:(1)∵拋物線交軸于點(diǎn)和點(diǎn),交軸于點(diǎn),
∴ ,解得 ,
∴;
(2)設(shè)點(diǎn)的縱坐標(biāo)為
∵
∴,
∴,
∴或
解得:或2或或
∴點(diǎn)的坐標(biāo)為或或或
(3)存在.
設(shè)AC解析式為,待入A,C點(diǎn)坐標(biāo),
,解得,
∴AC解析式為,
∵點(diǎn)在線段上
∴點(diǎn)的坐標(biāo)為
∵軸,交拋物線于點(diǎn),
∴點(diǎn)的坐標(biāo)為
∴
∴當(dāng)時(shí),的值最大.
又∵
∴的值最大時(shí),的面積最大.
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,矩形OABC的兩個(gè)頂點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B的坐標(biāo)是(8,2),點(diǎn)P是邊BC上的一個(gè)動(dòng)點(diǎn),連接AP,以AP為一邊朝點(diǎn)B方向作正方形PADE,連接OP并延長(zhǎng)與DE交于點(diǎn)M,設(shè).
(1)請(qǐng)用含a的代數(shù)式表示點(diǎn)P,E的坐標(biāo).
(2)如圖2,連接OE,并把OE繞點(diǎn)E逆時(shí)針?lè)较蛐D(zhuǎn)90°得EF.若點(diǎn)F恰好落在x軸的正半軸上,求a與的值.
(3)如圖1,若點(diǎn)M為DE的中點(diǎn),并且,點(diǎn)在OP的延長(zhǎng)線上,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,BC是⊙O的直徑,OE⊥BC交AB于點(diǎn)E,若BE=2AE,則∠ADC =_________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,AB//DC,∠A=60°,AD=DC=BC=4,點(diǎn)E沿A→D→C→B運(yùn)動(dòng),同時(shí)點(diǎn)F沿A→B→C運(yùn)動(dòng),運(yùn)動(dòng)速度均為每秒1個(gè)單位,當(dāng)兩點(diǎn)相遇時(shí),運(yùn)動(dòng)停止.則△AEF的面積y與運(yùn)動(dòng)時(shí)間x秒之間的圖象大致為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,△ABC中,AB=AC,BC=6,BE為中線,點(diǎn)D為BC邊上一點(diǎn);BD=2CD,DF⊥BE于點(diǎn)F,EH⊥BC于點(diǎn)H.
(1)CH的長(zhǎng)為_____;
(2)求BF·BE的值:
(3)如圖2,連接FC,求證:∠EFC=∠ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某校教學(xué)樓正前方有一棵大樹(shù)DE,高度是10米,從教學(xué)樓頂端A測(cè)得大樹(shù)頂端E的俯角α是45°,大樹(shù)低端D到教學(xué)樓前臺(tái)階底邊的水平距離CD是15米,臺(tái)階坡長(zhǎng)BC是6米,臺(tái)階的坡度i=1:,求教學(xué)樓AB的高度約為多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方程的根可視為函數(shù)的圖象與函數(shù)的圖象交點(diǎn)的橫坐標(biāo),則方程的實(shí)根所在的范圍是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于及一個(gè)矩形給出如下定義:如果上存在到此矩形四份頂點(diǎn)距離都相等的點(diǎn),那么稱是該矩形的“等距圓”,如圖,平面直角坐標(biāo)系中,矩形的頂點(diǎn)坐標(biāo)為,頂點(diǎn)在軸上,,且的半徑為.
(1)在,,中可以成為矩形的“等距圓”的圓心的是__________.
(2)如果點(diǎn)在直線上,且是矩形的“等距圓”,那么點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+3(a≠0)的對(duì)稱軸為直線x=﹣1,拋物線交x軸于A、C兩點(diǎn),與直線y=x﹣1交于A、B兩點(diǎn),直線AB與拋物線的對(duì)稱軸交于點(diǎn)E.
(1)求拋物線的解板式.
(2)點(diǎn)P在直線AB上方的拋物線上運(yùn)動(dòng),若△ABP的面積最大,求此時(shí)點(diǎn)P的坐標(biāo).
(3)在平面直角坐標(biāo)系中,以點(diǎn)B、E、C、D為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出符合條件點(diǎn)D的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com