鹽城市2008/2009學年度高三第三次調(diào)研考試

數(shù)學學科試題及答案

本試卷分第I卷(填空題)和第II卷(解答題)兩部分.考生作答時,將答案答在答題卡上,在本試卷上答題無效.考試結(jié)束后,將本試卷和答題卡一并交回.

注意事項:

       1.答題前,考生先將自己的姓名、準考證號填寫在答題卡上,認真核對條形碼上的準考證號、姓名,并將條形碼粘貼在指定位置上.

          2.選擇題答案使用2B鉛筆填涂,如需改動,用橡皮擦干凈后,再選涂其他答案標號;非選擇題答案使用0.5毫米的黑色中性(簽字)筆或炭素筆書寫,字體工整,筆跡清楚.

3.請按照題號在各題的答題區(qū)域(黑色線框)內(nèi)作答,超出答題區(qū)域書寫的答案無效.

4.保持卡面清潔,不折疊,不破損.

5.作選考題時,考生按照題目要求作答,并用2B鉛筆在答題卡上把所選題目對應(yīng)的標號涂黑.

參考公式:

樣本數(shù)據(jù),的標準差                                        錐體體積公式

                           

其中為樣本平均數(shù)                                                          其中為底面面積、為高

柱體體積公式                                                                     球的表面積、體積公式

                                                                              

其中為底面面積,為高                                               其中為球的半徑

第I卷(填空題)

一、填空題:本大題共14小題,每小題5分,計70分.不需寫出解答過程,請把答案寫在答題紙的指定位置上.

1.如果復數(shù)的模為,則    6    .

試題詳情

2.已知集合,則        .

試題詳情

3.拋物線的焦點坐標為        .

試題詳情

4.如圖所示,一個水平放置的“靶子”共由10個同心圓構(gòu)成,其半徑分別為1┩、2┩、3┩、…、10┩,最內(nèi)的小圓稱為10環(huán)區(qū),然后從內(nèi)向外的圓環(huán)依次為9環(huán)區(qū)、8環(huán)區(qū)、…、1環(huán)區(qū),現(xiàn)隨機地向“靶子”上撒一粒豆子,則豆子落在8環(huán)區(qū)的概率為       .

試題詳情

5.某幾何體的底部為圓柱,頂部為圓錐,其主視圖如圖所示,若,則該幾何體的體積為            .

試題詳情

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

6.如圖所示的程序框圖,如果輸入三個實數(shù),要求輸出這三個數(shù)中最大的數(shù),那么在空白的判斷框中,應(yīng)該填入的內(nèi)容是           .

試題詳情

7.將函數(shù)的圖象向左平移個單位后,所得的函數(shù)恰好是偶函數(shù),則的值為            .

試題詳情

8.已知函數(shù),數(shù)列滿足,且數(shù)列是遞增數(shù)列,則實數(shù)的取值范圍是       (2,3)   .

試題詳情

9.圖(1)、(2)、(3)、(4)分別包含1個、5個、13個、25個第二十九屆北京奧運會吉祥物“福娃迎迎”,按同樣的方式構(gòu)造圖形,設(shè)第個圖形包含個“福娃迎迎”,則

試題詳情

=         .(答案用數(shù)字或的解析式表示)

試題詳情

10.已知遞增的等比數(shù)列滿足,且的等差中項,若,則數(shù)列的前項和=         .

試題詳情

11.在邊長為1的菱形中,,E、F分別是BC、CD的中點,DE交AF于點H ,則=           .

試題詳情

12.若關(guān)于的方程的兩個實數(shù)根滿足,則的取值范圍是             .

試題詳情

13.若橢圓上任一點到其上頂點的最大距離恰好等于該橢圓的中心到其準線的距離,則該橢圓的離心率的取值范圍是            .

試題詳情

14.已知定義在R上的函數(shù)滿足,當時,. 若對任意的,不等式組均成立,則實數(shù)k的取值范圍是       .

第II卷(解答題)

試題詳情

二、解答題:本大題共6小題,計90分.解答應(yīng)寫出必要的文字說明,證明過程或演算步驟,請把答案寫在答題紙的指定區(qū)域內(nèi).

15.(本小題滿分14分)

試題詳情

如圖所示,角為鈍角,且,點分別在角的兩邊上.

試題詳情

(Ⅰ)若,求的長;

試題詳情

(Ⅱ)設(shè),且,求的值.

試題詳情

 

 

 

 

 

 

 

試題詳情

解:(Ⅰ)因為角為鈍角,且,所以…………………………2分

試題詳情

中,由,

試題詳情

………………………………………………5分

試題詳情

解得(舍),即的長為2………………………………………7分

 

試題詳情

(Ⅱ)由,得…………………………………………………9分

試題詳情

,………………………………11分

試題詳情

所以

試題詳情

……………………………………………………………………14分

試題詳情

16.(本小題滿分14分)

試題詳情

某高中地處縣城,學校規(guī)定家到學校的路程在10里以內(nèi)的學生可以走讀,因交通便利,所以走讀生人數(shù)很多.該校學生會先后5次對走讀生的午休情況作了統(tǒng)計,得到如下資料:

試題詳情

①     若把家到學校的距離分為五個區(qū)間:,則調(diào)查數(shù)據(jù)表明午休的走讀生分布在各個區(qū)間內(nèi)的頻率相對穩(wěn)定,得到了如右圖所示的頻率分布直方圖;

②     走讀生是否午休與下午開始上課的時間有著密切的關(guān)系. 下表是根據(jù)5次調(diào)查數(shù)據(jù)得到的下午開始上課時間與平均每天午休的走讀生人數(shù)的統(tǒng)計表.

下午開始上課時間

1:30

1:40

1:50

2:00

2:10

平均每天午休人數(shù)

250

350

500

650

750

試題詳情

 (Ⅰ)若隨機地調(diào)查一位午休的走讀生,其家到學校的路程(單位:里)在的概率是多少?

試題詳情

(Ⅱ)如果把下午開始上課時間1:30作為橫坐標0,然后上課時間每推遲10分鐘,橫坐標x增加1,并以平均每天午休人數(shù)作為縱坐標y,試根據(jù)表中的5列數(shù)據(jù)求平均每天午休人數(shù)與上課時間x之間的線性回歸方程

(Ⅲ)預測當下午上課時間推遲到2:20時,家距學校的路程在6里路以上的走讀生中約有多少人午休?

試題詳情

解答:(Ⅰ)…………………………………………………4分

(Ⅱ)根據(jù)題意,可得如下表格:

x

0

1

2

3

4

y

250

350

500

650

750

試題詳情

試題詳情

所以………8分

試題詳情

再由,得,故所求線性回歸方程為……………………10分

試題詳情

(Ⅲ)下午上課時間推遲到2:20時,,

此時,家距學校的路程在6里路以上的走讀生中約有133人(134人)……………………14分

試題詳情

17.(本小題滿分14分)如圖甲,在直角梯形中,,,的中點. 現(xiàn)沿把平面折起,使得(如圖乙所示),、分別為、邊的中點.

試題詳情

(Ⅰ)求證:平面;

試題詳情

(Ⅱ)求證:平面平面

試題詳情

(Ⅲ)在上找一點,使得平面.

試題詳情

 

 

 

 

 

 

 

 

 

 

 

試題詳情

解答:(Ⅰ)證:因為PA⊥AD,PA⊥AB,,所以平面……………4分

試題詳情

(Ⅱ)證:因為,A是PB的中點,所以ABCD是矩形,又E為BC邊的中點,所以AE⊥ED。又由平面,得,且,所以平面,而平面,故平面平面…………………………………………………………9分

 

試題詳情

(Ⅲ)過點,再過,連結(jié)。

試題詳情

,平面,得∥平面;

試題詳情

平面,得∥平面,

試題詳情

,所以平面∥平面……………………………………………12分

試題詳情

再分別取的中點、,連結(jié)、,易知的中點,的中點,從而當點滿足時,有平面!14分

試題詳情

18.(本小題滿分16分)

試題詳情

    已知圓,相互垂直的兩條直線、都過點.

試題詳情

(Ⅰ)若都和圓相切,求直線的方程;

試題詳情

(Ⅱ)當時,若圓心為的圓和圓外切且與直線、都相切,求圓的方程;

試題詳情

(Ⅲ)當時,求、被圓所截得弦長之和的最大值.

試題詳情

解答:(Ⅰ)顯然,的斜率都是存在的,設(shè),則

……………………………………………………………………………………………1分

試題詳情

則由題意,得,………………………………………………3分

試題詳情

解得 ,即……………………………5分

試題詳情

、的方程分別為……………………………………………………………………………6分

試題詳情

(Ⅱ)設(shè)圓的半徑為,易知圓心到點的距離為

試題詳情

………………………………………………………9分

試題詳情

解得,∴圓的方程為………………………11分

 

試題詳情

(Ⅲ)當時,設(shè)圓的圓心為,、被圓所截得弦的中點分別為,弦長分別為,因為四邊形是矩形,所以,即

試題詳情

,化簡得…………………………………14分

試題詳情

從而

試題詳情

、被圓所截得弦長之和的最大值為…………………………………16分

試題詳情

19.(本小題滿分16分)

試題詳情

設(shè)函數(shù).

試題詳情

(Ⅰ)求證:當時,;

試題詳情

(Ⅱ)存在,使得成立,求的取值范圍;

試題詳情

(Ⅲ)若恒成立,求的取值范圍.

試題詳情

解答:(Ⅰ)解答:(Ⅰ)因為當時,,

試題詳情

所以上單調(diào)遞減,………………………………………………………3分

試題詳情

,所以當時,……………………………………………4分

試題詳情

(Ⅱ) 因為,所以,

試題詳情

由(Ⅰ)知,當時,,所以………………………6分

試題詳情

所以上單調(diào)遞減,則當時,………………………8分

試題詳情

由題意知,上有解,所以,從而………………………10分

試題詳情

(Ⅲ)由恒成立,

試題詳情

①當時,不等式顯然成立………………………………………………………11分

試題詳情

②當時,因為,所以取,則有,從而此時不等式不恒成立…………………………………………………………………………12分

試題詳情

③當時,由(Ⅱ)可知上單調(diào)遞減,而

試題詳情

,    ∴成立………………………………………14分

試題詳情

④當時,當時,,則

試題詳情

,∴不成立,

試題詳情

綜上所述,當時,有恒成立。

………………………………………………………………………………………………16分

試題詳情

20.(本小題滿分16分)

試題詳情

數(shù)列滿足.

試題詳情

(Ⅰ)求數(shù)列的通項公式;

試題詳情

(Ⅱ)當為某等差數(shù)列的第1項,第項,第+7項,且,求;

試題詳情

(Ⅲ)求證:數(shù)列中能抽取出一個子數(shù)列成等比數(shù)列的充要條件是為有理數(shù).

試題詳情

解答:(Ⅰ)當時,,∴……2分

試題詳情

時,,∴…………………………………………4分

試題詳情

…………………………………………5分

試題詳情

(Ⅱ)當時,,則該等差數(shù)列的公差為

試題詳情

,∴,

試題詳情

                                              ①

試題詳情

,所以,即        ②

試題詳情

由①知,為整數(shù)或分母為7的既約分數(shù);由②知,為整數(shù)或分母為2的既約分數(shù),從而必為整數(shù)………………………………………………………………………7分

試題詳情

由②知,,結(jié)合①得,,所以只能取7,故,………8分

試題詳情

又由②得,,設(shè)

試題詳情

試題詳情

因為

試題詳情

所以當時,,又,

試題詳情

從而,故上單調(diào)遞增。

試題詳情

則由,知上無解…………………………10分

試題詳情

,,

試題詳情

所以,

試題詳情

綜上所述,當,且時滿足條件……………………………………………11分

試題詳情

(Ⅲ)①必要性。若中存在一個子數(shù)列成等比數(shù)列,設(shè)為其中的連續(xù)三項。因為,所以,則

試題詳情

……………………………………………………12分

試題詳情

⑴當時,,即,則,矛盾;

試題詳情

⑵當時,,則,所以必要性成立………………13分

試題詳情

②充分性。若為有理數(shù),因為,所以可取足夠大的正整數(shù),使

試題詳情

,因為也為有理數(shù),故可設(shè)(其中為互質(zhì)正整數(shù))。

試題詳情

現(xiàn)構(gòu)造等比數(shù)列,使得首項,公比,則

試題詳情

…………………………………………14分

試題詳情

因為,

試題詳情

所以

試題詳情

從而,

試題詳情

設(shè),則為正整數(shù),

試題詳情

,故必為中的項,即等比數(shù)列的子數(shù)列,所以充分性也成立。

綜合①②知,原命題成立!16分

 

 

 

 

數(shù)學附加題

試題詳情

21.[選做題] 在A、B、C、D四小題中只能選做2題,每小題10分,計20分.請把答案寫在答題紙的指定區(qū)域內(nèi).

    A.(選修4―1:幾何證明選講)

試題詳情

如圖,四邊形ABCD內(nèi)接于圓,弧,過A點的切線交CB的延長線于E點.

試題詳情

求證:

 

 

 

 

 

 

 

 

試題詳情

證:連結(jié),因為切圓,所以∠EAB=∠ACB。

試題詳情

因為弧,所以∠ACD=∠ACB,AB=AD,于是∠EAB=∠ACD………………5分

試題詳情

又四邊形ABCD內(nèi)接于圓,所以∠ABE=∠D,所以△ABE∽CDA.

試題詳情

于是,即,所以…………………………10分

B.(選修4―2:矩陣與變換)

試題詳情

已知矩陣  ,A的一個特征值,其對應(yīng)的特征向量是.

試題詳情

   (Ⅰ)求矩陣;

試題詳情

(Ⅱ)若向量,計算的值.

試題詳情

解:(Ⅰ)  ……………………………………………………………3分

試題詳情

(Ⅱ)矩陣A的特征多項式為  ,

試題詳情

解得……………………………………………………………6分

試題詳情

時,得;當時,得,

試題詳情

,得,得…………………………………8分

試題詳情

試題詳情

…………………………………………………10分

C.(選修4―4:坐標系與參數(shù)方程)

試題詳情

已知某圓的極坐標方程為ρ2 -4ρcos(θ-)+6=0.

(Ⅰ)將極坐標方程化為普通方程,并選擇恰當?shù)膮?shù)寫出它的參數(shù)方程;

試題詳情

(Ⅱ)若點在該圓上,求的最大值和最小值.

試題詳情

解答:(Ⅰ);為參數(shù))……………5分

試題詳情

(Ⅱ)因為,所以其最大值為6,最小值為2……………10分

D.(選修4―5:不等式選講)

試題詳情

   設(shè)均為正實數(shù).

試題詳情

(Ⅰ)若,求的最小值;

試題詳情

(Ⅱ)求證:.

試題詳情

解答:(Ⅰ)解:因為均為正實數(shù),由柯西不等式得

試題詳情

,當且僅當時等號成立,∴的最小值為………………………………………………5分

試題詳情

(Ⅱ)∵均為正實數(shù),∴,當時等號成立;

試題詳情

,當時等號成立;

試題詳情

,當時等號成立;

試題詳情

三個不等式相加得,,當且僅當時等號成立。

……………………………………………………………………10分

試題詳情

[必做題] 第22、23題,每小題10分,計20分.請把答案寫在答題紙的指定區(qū)域內(nèi).

試題詳情

22.(本小題滿分10分)

試題詳情

如圖所示,已知曲線,曲線 關(guān)于點對稱,且曲線交于點O、A,直線與曲線、、軸分別交于點、、,連結(jié).

試題詳情

(Ⅰ)求曲邊三角形(陰影部分)的面積;

試題詳情

(Ⅱ)求曲邊三角形(陰影部分)的面積.

  

 

 

 

 

 

試題詳情

解答:(Ⅰ)易得曲線的方程為…………………………………………2分

試題詳情

,得點,又由已知得………………4分

試題詳情

………………………………………6分

試題詳情

(Ⅱ)………………………10分

 

試題詳情

23. (本小題滿分10分)

試題詳情

已知為等差數(shù)列,且,公差.

試題詳情

(Ⅰ)試證:;

(Ⅱ)根據(jù)(Ⅰ)中的幾個等式,試歸納出更一般的結(jié)論,并用數(shù)學歸納法證明.

解答:(Ⅰ)略……………………………………………………………………3分

試題詳情

(Ⅱ)結(jié)論:………………………5分

試題詳情

證:①當時,等式成立,

試題詳情

②假設(shè)當時,成立,

試題詳情

那么當時,因為,所以

試題詳情

試題詳情

試題詳情

試題詳情

試題詳情

所以,當時,結(jié)論也成立。

試題詳情

綜合①②知,都成立…………10分

  • 90

     

     

    試題詳情


    同步練習冊答案