由②知..結(jié)合①得..所以只能取7.故.---8分 查看更多

 

題目列表(包括答案和解析)

已知向量),向量

.

(Ⅰ)求向量; (Ⅱ)若,,求.

【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關(guān)系式的運用。

(1)問中∵,∴,…………………1分

,得到三角關(guān)系是,結(jié)合,解得。

(2)由,解得,,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯(lián)立方程解得,,5分

     ……………6分

(Ⅱ)∵,,  …………7分

,               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知, ;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知, .                …………9分

             ……………10分

,且注意到,

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴ ,

 

查看答案和解析>>

如圖,是△的重心,、分別是邊上的動點,且、三點共線.

(1)設(shè),將、、表示;

(2)設(shè),,證明:是定值;

(3)記△與△的面積分別為.求的取值范圍.

(提示:

【解析】第一問中利用(1)

第二問中,由(1),得;①

另一方面,∵是△的重心,

不共線,∴由①、②,得

第三問中,

由點、的定義知,

時,;時,.此時,均有

  時,.此時,均有

以下證明:,結(jié)合作差法得到。

解:(1)

(2)一方面,由(1),得;①

另一方面,∵是△的重心,

.  ②

、不共線,∴由①、②,得 

解之,得,∴(定值).

(3)

由點、的定義知,,

時,;時,.此時,均有

  時,.此時,均有

以下證明:.(法一)由(2)知,

,∴

,∴

的取值范圍

 

查看答案和解析>>

(1)若m,n∈R,由m2+n2≥2mn可得2(m2+n2)≥m2+n2+2mn,即有2(m2+n2)≥(m+n)2;
(2)已知x>0,y>0,且x+y=1,利用(1)中不等式,求
x+
1
2
+
y+
1
2
的最大值并求出對應(yīng)的x,y的值.

查看答案和解析>>

拓展探究題
(1)已知兩個圓:①x2+y2=1;②x2+(y-3)2=1,則由①式減去②式可得兩圓的對稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應(yīng)成為所推廣命題的一個特例.推廣的命題為
已知兩個圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對稱軸方程
已知兩個圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對稱軸方程

(2)平面幾何中有正確命題:“正三角形內(nèi)任意一點到三邊的距離之和等于定值,大小為邊長的
3
2
倍”,請你寫出此命題在立體幾何中類似的真命題:
正四面體內(nèi)任意一點到四個面的距離之和是一個定值,大小為棱長的
6
3
正四面體內(nèi)任意一點到四個面的距離之和是一個定值,大小為棱長的
6
3

查看答案和解析>>

請先閱讀:
設(shè)可導函數(shù) f(x) 滿足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的兩邊對x求導,
得(f(-x))′=(-f(x))′,
由求導法則,得f′(-x)•(-1)=-f′(x),
化簡得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),結(jié)合等式(1+x)n=
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn
(x∈R,整數(shù)n≥2),證明:n[(1+x)n-1-1]=2
C
2
n
x+3
C
3
n
x2+4
C
4
n
x3+…+n
C
n
n
xn-1

(Ⅱ)當整數(shù)n≥3時,求
C
1
n
-2
C
2
n
+3
C
3
n
-…+(-1)n-1n
C
n
n
的值;
(Ⅲ)當整數(shù)n≥3時,證明:2
C
2
n
-3•2
C
3
n
+4•3
C
4
n
+…+(-1)n-2n(n-1)
C
n
n
=0

查看答案和解析>>


同步練習冊答案