如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,且DF=CF=
2
,E是AB延長線上一點(diǎn),AF:BF:BE=4:2:1,若CE與圓相切,則線段CE的長為
 
考點(diǎn):與圓有關(guān)的比例線段
專題:選作題,立體幾何
分析:設(shè)出AF=4k,BF=2k,BE=k,由DF•FC=AF•BF求出k的值,利用切割定理求出CE.
解答: 解:設(shè)AF=4k,BF=2k,BE=k,由DF•FC=AF•BF,得2=8k2,即k=
1
2
,
∴AF=2,BF=1,BE=
1
2
,AE=
7
2
,
由切割定理得CE2=BE•EA=
1
2
×
7
2
=
7
4
,
∴CE=
7
2

故答案為:
7
2
點(diǎn)評:本題是基礎(chǔ)題,考查直線與圓的位置關(guān)系,考查計算能力,基本知識掌握的情況,?碱}型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若{an}無窮等比數(shù)列,則下列數(shù)列可能不是等比數(shù)列的是( 。
A、{a2n}
B、{a2n-1}
C、{an•an+1}
D、{an+an+1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某化工企業(yè)生產(chǎn)某種產(chǎn)品,生產(chǎn)每件產(chǎn)品的成本為3元,根據(jù)市場調(diào)查,預(yù)計每件產(chǎn)品的出廠價為x元(7≤x≤10)時,一年的產(chǎn)量為(11-x)2萬件;若該企業(yè)所生產(chǎn)的產(chǎn)品能全部銷售,則稱該企業(yè)正常生產(chǎn);但為了保護(hù)環(huán)境,用于污染治理的費(fèi)用與產(chǎn)量成正比,比例系數(shù)為常數(shù)a(1≤a≤3).
(Ⅰ)求該企業(yè)正常生產(chǎn)一年的利潤L(x)與出廠價x的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)每件產(chǎn)品的出廠價定為多少元時,企業(yè)一年的利潤最大,并求最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-1|+|2x+1|
(Ⅰ)解不等式f(x)<3;
(Ⅱ)若不等式f(x)≤|
1
2
a-1|解集非空,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,PA為圓O的切線,A為切點(diǎn),PO交于圓O與B,C兩點(diǎn),PA=10,PB=5,∠BAC的角平分線與BC和圓O分別交于點(diǎn)D和E.
(Ⅰ)求
AB
AC
=
PA
PC
;
(Ⅱ)求AD•AE的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x2+a
x
,且f(1)=3.
(1)求證:函數(shù)f(x)在[
2
2
,+∞)
上單調(diào)遞增;
(2)設(shè)關(guān)于x的方程f(x)=x+b的兩根為x1,x2,是否存在實(shí)數(shù)t,使得不等式2m2-t•m+4≥|x1-x2|對?b∈[2,
13
]
?m∈[
1
2
,2]
恒成立?若存在,求實(shí)數(shù)t的取值范圍;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)(x∈R)滿足f(x+1)+f(x)=0,當(dāng)x∈[0,1]時,f(x)=x
1
2008
,則f(
11
5
)、f(
7
5
)、f(
22
5
)由大到小的排列是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x3-2x+4在點(diǎn)(1,3)處的切線方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(1,2),
b
=(-2,m),且
a
b
,則|
b
|=
 

查看答案和解析>>

同步練習(xí)冊答案