【題目】某省為迎接新高考,擬先對(duì)考生某選考學(xué)科的實(shí)際得分進(jìn)行等級(jí)賦分,再按賦分后的分?jǐn)?shù)從高分到低分劃A、B、C、D、E五個(gè)等級(jí),考生實(shí)際得分經(jīng)賦分后的分?jǐn)?shù)在到1之間.在等級(jí)賦分科學(xué)性論證時(shí),對(duì)過(guò)去一年全省高考考生的該學(xué)科成績(jī)重新賦分后進(jìn)行分析,隨機(jī)抽取2000名學(xué)生的該學(xué)科賦分后的成績(jī),得到如下頻率分布直方圖:(不考慮缺考考生的試卷)
附:若X~N(μ,σ2),則P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544,P(μ-3σ<X<μ+3σ)=0.9974,=14.59,∑(xi-)2pi=213
(1)求這2000名考生賦分后該學(xué)科的平均(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表);
(2)由頻率分布直方圖可以認(rèn)為,學(xué)生經(jīng)過(guò)賦分以后的成績(jī)X服從正態(tài)分布X~N(μ,σ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差s2:
(i)利用正態(tài)分布,求P(50.41<X<79.59);
(ii)某市有20000名高三學(xué)生,記Y表示這20000名高三學(xué)生中賦分后該學(xué)科等級(jí)為A等(即得分大于79.59)的學(xué)生數(shù),利用(i)的結(jié)果,求EY.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用組成沒(méi)有重復(fù)數(shù)字的五位數(shù)abcde,其中隨機(jī)取一個(gè)五位數(shù),滿足條件的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,平面,,,分別是,,的中點(diǎn),點(diǎn)在線段上,.
(1)求證:平面;
(2)若平面平面,,,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的極坐標(biāo)方程和曲線的參數(shù)方程;
(2)若,直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)點(diǎn)與定點(diǎn)的距離和該動(dòng)點(diǎn)到直線的距離的比是常數(shù).
(1)求動(dòng)點(diǎn)軌跡方程;
(2)已知點(diǎn),問(wèn)在軸上是否存在一點(diǎn),使得過(guò)點(diǎn)的任一條斜率不為0的弦交曲線于兩點(diǎn),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了治理空氣污染,某市設(shè)個(gè)監(jiān)測(cè)站用于監(jiān)測(cè)空氣質(zhì)量指數(shù),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有、、個(gè)監(jiān)測(cè)站,并以個(gè)監(jiān)測(cè)站測(cè)得的的平均值為依據(jù)播報(bào)該市的空氣質(zhì)量.
(1)若某日播報(bào)的為,已知輕度污染區(qū)平均值為,中度污染區(qū)平均值為,求重試污染區(qū)平均值;
(2)如圖是年月份天的的頻率分布直方圖,月份僅有天在內(nèi).
①某校參照官方公布的,如果周日小于就組織學(xué)生參加戶外活動(dòng),以統(tǒng)計(jì)數(shù)據(jù)中的頻率為概率,求該校學(xué)生周日能參加戶外活動(dòng)的概率;
②環(huán)衛(wèi)部門從月份不小于的數(shù)據(jù)中抽取兩天的數(shù)據(jù)進(jìn)行研究,求抽取的這兩天中值都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,平面平面,∥,,,,.
(1)求多面體的體積;
(2)已知是棱的中點(diǎn),在棱是否存在點(diǎn)使得∥,若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com