【題目】如圖,棱錐的地面是矩形, 平面,,.

(1)求證: 平面;

(2)求二面角的大小;

【答案】1)詳見解析;(2

【解析】

試題(1)利用空間向量證明線面垂直,即證平面的一個法向量為 ,先根據(jù)條件建立恰當(dāng)直角坐標(biāo)系,設(shè)立各點坐標(biāo),利用向量數(shù)量積證明為平面的一個法向量,最后根據(jù)線面垂直判定定理得結(jié)論(2)利用空間向量求二面角,先利用解方程組的方法求出平面法向量,利用向量數(shù)量積求出兩法向量夾角,最后根據(jù)二面角與法向量夾角關(guān)系確定二面角大小

試題解析:證:(1)建立如圖所示的直角坐標(biāo)系,

則A(0,0,0)、D(0,2,0)、P(0,0,2).

在Rt△BAD中,AD=2,BD=,

∴AB=2.∴B(2,0,0)、C(2,2,0),

,即BD⊥AP,BD⊥AC,又AP∩AC=A,∴BD⊥平面PAC.

(2)由(1)得.

設(shè)平面PCD的法向量為,則,

,∴故平面PCD的法向量可取為

∵PA⊥平面ABCD,∴為平面ABCD的法向量.

設(shè)二面角P—CD—B的大小為q,依題意可得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C的對邊,若△ABC的周長為2(+1),且sin B+sin C=sin A,則a= (  )

A. B. 2 C. 4 D.

【答案】B

【解析】

根據(jù)正弦定理把轉(zhuǎn)化為邊的關(guān)系,進而根據(jù)ABC的周長,聯(lián)立方程組,可求出a的值.

根據(jù)正弦定理,可化為

∵△ABC的周長為,

聯(lián)立方程組,

解得a=2.

故選:B

【點睛】

(1)在三角形中根據(jù)已知條件求未知的邊或角時,要靈活選擇正弦、余弦定理進行邊角之間的轉(zhuǎn)化,以達到求解的目的.

(2)求角的大小時,在得到角的某一個三角函數(shù)值后,還要根據(jù)角的范圍才能確定角的大小,這點容易被忽視,解題時要注意.

型】單選題
結(jié)束】
7

【題目】已知數(shù)列{an}中,an=n2-kn(n∈N*),且{an}單調(diào)遞增,則k的取值范圍是(  )

A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點在坐標(biāo)原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標(biāo)為2,且.

1)求拋物線的方程;

2)過點作直線交拋物線于兩點,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

直角坐標(biāo)系中曲線的參數(shù)方程為參數(shù)),在以坐標(biāo)原點為極點, 軸正半軸為極軸的極坐標(biāo)系中, 點的極坐標(biāo),在平面直角坐標(biāo)系中,直線經(jīng)過點,傾斜角為

(1)寫出曲線的直角坐標(biāo)方程和直線的參數(shù)方程;

(2)設(shè)直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的內(nèi)接等邊三角形的面積為(其中為坐標(biāo)原點).

(1)試求拋物線的方程;

(2)已知點兩點在拋物線上,是以點為直角頂點的直角三角形.

①求證:直線恒過定點;

②過點作直線的垂線交于點,試求點的軌跡方程,并說明其軌跡是何種曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為: 為參數(shù), ),將曲線經(jīng)過伸縮變換: 得到曲線.

(1)以原點為極點, 軸的正半軸為極軸建立坐標(biāo)系,求的極坐標(biāo)方程;

(2)若直線為參數(shù))與相交于兩點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,直線l的參數(shù)方程為為參數(shù)),曲線的方程為.以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.

1)求直線l和曲線的極坐標(biāo)方程;

2)曲線分別交直線和曲線于點,求的最大值及相應(yīng)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求處的切線方程;

2)對于任意,恒成立,求的取值范圍;

3)試討論函數(shù)的極值點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點到準(zhǔn)線的距離為,直線與拋物線交于,兩點,過這兩點分別作拋物線的切線,且這兩條切線相交于點

1)若點的坐標(biāo)為,求的值;

2)設(shè)線段的中點為,過的直線與線段為直徑的圓相切,切點為,且直線與拋物線交于,兩點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案