【題目】已知拋物線的內(nèi)接等邊三角形的面積為(其中為坐標(biāo)原點).
(1)試求拋物線的方程;
(2)已知點兩點在拋物線上,是以點為直角頂點的直角三角形.
①求證:直線恒過定點;
②過點作直線的垂線交于點,試求點的軌跡方程,并說明其軌跡是何種曲線.
【答案】(1);(2)①證明見解析;②,是以為直徑的圓(除去點.
【解析】
(1)設(shè)A(xA,yA),B(xB,yB),由|OA|=|OB|,可得2pxA2pxB,化簡可得:點A,B關(guān)于x軸對稱.因此AB⊥x軸,且∠AOx=30°.可得yA=2p,再利用等邊三角形的面積計算公式即可得出;
(2)①由題意可設(shè)直線PQ的方程為:x=my+a,P(x1,y1),Q(x2,y2).與拋物線方程聯(lián)立化為:y2﹣my﹣a=0,利用∠PMQ=90°,可得0利用根與系數(shù)的關(guān)系可得m,或(m),進(jìn)而得出結(jié)論;
②設(shè)N(x,y),根據(jù)MN⊥NH,可得0,即可得出.
(1)解依題意,設(shè),,
則由,得,
即,
因為,,所以,
故,,
則,關(guān)于軸對稱,
所以軸,且,
所以.
因為,所以,
所以,
故,,
故拋物線的方程為.
(2)①證明 由題意可設(shè)直線的方程為,
,,
由,消去,得,
故,,.
因為,所以.
即.
整理得,
,
即,
得,
所以或.
當(dāng),即時,
直線的方程為,
過定點,不合題意舍去.
故直線恒過定點.
②解 設(shè),則,即,
得,
即,
即軌跡是以為直徑的圓(除去點).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一張半徑為的圓形鐵皮,從中裁剪出一塊扇形鐵皮(如圖陰影部分),并卷成一個深度為的圓錐筒,如圖.
(1)若所裁剪的扇形鐵皮的圓心角為,求圓錐筒的容積;
(2)當(dāng)為多少時,圓錐筒的容積最大?并求出容積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任對全班50名學(xué)生學(xué)習(xí)積極性和對待工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計數(shù)據(jù)如下所示:
積極參加班級工作 | 不太主動參加班級工作 | 合計 | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(1)如果隨機(jī)抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運(yùn)用獨(dú)立性檢驗的思想方法有多大把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對班級工作的態(tài)度有關(guān)系?并說明理由.
本題參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.
(1)求的值;
(2)填寫下面列聯(lián)表,能否在犯錯誤的概率不超過0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?
文科生 | 理科生 | 合計 | |
獲獎 | 6 | ||
不獲獎 | |||
合計 | 400 |
(3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某校高三年級中隨機(jī)抽取100名學(xué)生,對其高校招生體檢表中的視圖情況進(jìn)行統(tǒng)計,得到如圖所示的頻率分布直方圖,已知從這100人中隨機(jī)抽取1人,其視力在的概率為.
(1)求的值;
(2)若某大學(xué)專業(yè)的報考要求之一是視力在0.9以上,則對這100人中能報考專業(yè)的學(xué)生采用按視力分層抽樣的方法抽取8人,調(diào)查他們對專業(yè)的了解程度,現(xiàn)從這8人中隨機(jī)抽取3人進(jìn)行是否有意向報考該大學(xué)專業(yè)的調(diào)查,記抽到的學(xué)生中視力在的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題,其中正確的是( )
A.對分類變量與的隨機(jī)變量的觀測值來說,越小,“與有關(guān)系”可信程度越大
B.殘差點比較均勻地落在水平帶狀區(qū)域內(nèi),帶狀區(qū)域越窄,則模型擬合精度越高
C.相關(guān)指數(shù)越小,則殘差平方和越大,模型的擬合效果越好
D.兩個隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在其定義域內(nèi)單調(diào)遞增,求實數(shù)的最大值;
(2)若存在正實數(shù)對,使得當(dāng)時,能成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com