【題目】已知,點(diǎn)在射線上,點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合).點(diǎn)關(guān)于的對稱點(diǎn)為點(diǎn),連接、和,點(diǎn)在直線上,且滿足.小明在探究圖形運(yùn)動(dòng)的過程中發(fā)現(xiàn):始終成立.
(1)如圖1,當(dāng)時(shí);
①求證:;
②用等式表示線段、與之間的數(shù)量關(guān)系,并證明;
(2)當(dāng)時(shí),直接用等式表示線段、與之間的數(shù)量關(guān)系是______.
【答案】(1)①見解析;②;證明見解析;(2)
【解析】
(1)①根據(jù)軸對稱的性質(zhì)得到△ABC≌△ADC,求得∠ABC=∠ADC,∠ACB=∠ACD=45°,根據(jù)等腰三角形的性質(zhì)和四邊形的內(nèi)角和即可得到結(jié)論;
②過A作AP⊥AC交CB的延長線于P,求得△APC是等腰直角三角形,∠PAC=90°,AP=AC,得到∠PAF=∠DAC,根據(jù)全等三角形的性質(zhì)和等腰直角三角形的性質(zhì)即可得到結(jié)論;
(2)如圖2,過A作AP⊥AC交CB的延長線于P,求得△APC是等腰直角三角形,∠PAC=90°,AP=AC,得到∠PAF=∠DAC,根據(jù)全等三角形的性質(zhì)和等腰直角三角形的性質(zhì)即可得到結(jié)論.
(1)①∵點(diǎn)關(guān)于的對稱點(diǎn)為點(diǎn)
∴
∴,
∴
∵
∴
∴
∵
∴
在四邊形中,
∴
②
解:過點(diǎn)作邊的垂線交延長線于點(diǎn)
∴是等腰直角三角形,,
∵
∴
∵
∴
∴
在等腰中,
∴
(2)
當(dāng)90°<∠BAC<135°時(shí),如圖2,
過A作AP⊥AC交CB的延長線于P,
∴△APC是等腰直角三角形,∠PAC=90°,AP=AC,
∵∠PAF-∠FAC=∠DAC-∠FAC=90°,
∴∠PAF=∠DAC,
∵∠AFB=∠ADC,
∴△APF≌△ACD(ASA),
∴PF=CD,
∵在等腰直角三角形APC中,PF-CF=PC=AC,
∴CD-CF=AC,
故答案為:CD-CF=AC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=4cm.BC=5cm,P是上的動(dòng)點(diǎn).設(shè)A,P兩點(diǎn)間的距離為xcm,
B,P兩點(diǎn)間的距離為cm,C,P兩點(diǎn)間的距離為cm.
小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù),隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小騰的探究過程,請補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了,的幾組對應(yīng)值:
x/cm | 0 | 1 | 2 | 3 | 4 |
/cm | 4.00 | 3.69 | 2.13 | 0 | |
/cm | 3.00 | 3.91 | 4.71 | 5.23 | 5 |
(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(diǎn)(x,),(x,),并畫出函數(shù),的圖象:
(3)結(jié)合函數(shù)圖象.
①當(dāng)△PBC為等腰三角形時(shí),AP的長度約為____cm.
②記所在圓的圓心為點(diǎn)O,當(dāng)直線PC恰好經(jīng)過點(diǎn)O時(shí),PC的長度約為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,BE⊥CD于點(diǎn)E,DF⊥BC于點(diǎn)F.
(1)求證:BF=DE;
(2)分別延長BE和AD,交于點(diǎn)G,若∠A=45°,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與y軸交于點(diǎn)A,與拋物線的對稱軸交于點(diǎn)B,將點(diǎn)A向右平移5個(gè)單位得到點(diǎn)C,連接AB,AC得到的折線段記為圖形G.
(1)求出拋物線的對稱軸和點(diǎn)C坐標(biāo);
(2)①當(dāng)時(shí),直接寫出拋物線與圖形G的公共點(diǎn)個(gè)數(shù).
②如果拋物線與圖形G有且只有一個(gè)公共點(diǎn),求出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小菲設(shè)計(jì)的“作一個(gè)角等于已知角的二倍”的尺規(guī)作圖過程.
已知:中,.
求作:,使得.
作法:如圖,
①分別以點(diǎn)和點(diǎn)為圓心,大于的長為半徑作弧,兩弧交于、點(diǎn),作直線;
②分別以點(diǎn)和點(diǎn)為圓心,大于的長為半徑作弧,兩弧交于、點(diǎn),作直線,和交于點(diǎn);
③連接和;
④以點(diǎn)為圓心,的長為半徑作.
所以.
根據(jù)小菲設(shè)計(jì)的尺規(guī)作圖過程.
(1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡);
(2)完成下面的證明.
證明:連接
∵和分別為、的垂直平分線,
∴________.
∴是的外接圓.
∵點(diǎn)是上的一點(diǎn),
∴.(____________).(填推理的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)為平面內(nèi)不在同一直線上的三點(diǎn),點(diǎn)為平面內(nèi)一個(gè)動(dòng)點(diǎn),線段的中點(diǎn)分別為.在點(diǎn)的運(yùn)動(dòng)過程中,有下列結(jié)論:①存在無數(shù)個(gè)中點(diǎn)四邊形是平行四邊形;②存在無數(shù)個(gè)中點(diǎn)四邊形是菱形;③存在無數(shù)個(gè)中點(diǎn)四邊形是矩形;④存在兩個(gè)中點(diǎn)四邊形是正方形.所有正確結(jié)論的序號(hào)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,存在拋物線以及兩點(diǎn).
(1)求該拋物線的頂點(diǎn)坐標(biāo);(用含的代數(shù)式表示)
(2)若該拋物線經(jīng)過點(diǎn),求此拋物線的表達(dá)式;
(3)若該拋物線與線段有公共點(diǎn),結(jié)合圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C,D在⊙O上,弦AD的延長線與弦BC的延長線相交于點(diǎn)E.用①AB是⊙O的直徑,②CB=CE,③AB=AE中的兩個(gè)作為題設(shè),余下的一個(gè)作為結(jié)論組成一個(gè)命題,則組成真命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線x=3與直線y=x+1交于點(diǎn)A,函數(shù)y=(k>0,x>0)的圖象與直線x=3,直線y=x+1分別交于點(diǎn)B,C.
(1)求點(diǎn)A的坐標(biāo).
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記函數(shù)y=(k>0,x>0)的圖象在點(diǎn)B,C之間的部分與線段AB,AC圍成的區(qū)域(不含邊界)為W.
①當(dāng)k=1時(shí),結(jié)合函數(shù)圖象,求區(qū)域W內(nèi)整點(diǎn)的個(gè)數(shù);
②若區(qū)域W內(nèi)恰有1個(gè)整點(diǎn),直接寫出k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com