【題目】通過學(xué)習(xí)銳角三角比,我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值是一一對(duì)應(yīng)的,因此,兩條邊長(zhǎng)的比值與角的大小之間可以相互轉(zhuǎn)化。類似的,可以在等腰三角形中建立邊角之間的聯(lián)系。我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(duì)(can).

如圖(1)在中,,底角的鄰對(duì)記作,這時(shí),容易知道一個(gè)角的大小與這個(gè)角的鄰對(duì)值也是一一對(duì)應(yīng)的.根據(jù)上述角的鄰對(duì)的定義解下列問題:

1= ;

2)如圖(2),在中,,,,求的周長(zhǎng)

【答案】1can30°=;(2ABC的周長(zhǎng)=

【解析】

1)過點(diǎn)AADBC于點(diǎn)D,根據(jù)∠B=30°,可得出BD= AB,結(jié)合等腰三角形的性質(zhì)可得出BC= AB,繼而得出canB;

2)過點(diǎn)AAEBC于點(diǎn)E,根據(jù)canB= ,設(shè)BC=8x,AB=5x,再由SABC=24,可得出x的值,繼而求出周長(zhǎng).

1(1)過點(diǎn)AADBC于點(diǎn)D,

∵∠B=30°,

cosB= =,

BD= AB

∵△ABC是等腰三角形,

BC=2BD=AB,

can30°= =

2)∵在ABC中, canB ,∴

設(shè)

過點(diǎn)AAE垂足為點(diǎn)E,

AB=AC

ABC的周長(zhǎng)=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解全校學(xué)生主題閱讀的情況,隨機(jī)抽查了部分學(xué)生在某一周主題閱讀文章的篇數(shù),并制成下列統(tǒng)計(jì)圖表.

請(qǐng)根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:

1)求被抽查的學(xué)生人數(shù)和m的值;

2)求本次抽查的學(xué)生文章閱讀篇數(shù)的中位數(shù)和眾數(shù);

3)若該校共有1200名學(xué)生,根據(jù)抽查結(jié)果,估計(jì)該校學(xué)生在這一周內(nèi)文章閱讀的篇數(shù)為4篇的人數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一副三角板按如圖所示疊放在一起,其中點(diǎn)B,D重合,若固定△AOB,將△ACD繞著公共頂點(diǎn)A,按逆時(shí)針方向旋轉(zhuǎn)α度(0α90°),當(dāng)旋轉(zhuǎn)后的△ACD的一邊與△AOB的某一邊平行時(shí),寫出所有滿足條件的α的值____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖矩形,AB2BC4,EAB二等分點(diǎn),直線l平行于直線EC,且直線l與直線EC之間的距離為2,點(diǎn)F在矩形ABCD邊上,沿直線EF折疊矩形ABCD,使點(diǎn)A落在直線l上,則DF_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,并且關(guān)于x的一元二次方程ax2+bx+c﹣m=0有兩個(gè)不相等的實(shí)數(shù)根,下列結(jié)論:

①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,

其中,正確的個(gè)數(shù)有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABOCD是以點(diǎn)0為位似中心的位似圖形,相似比為1:2,OCD=90CO=CD.B(2,0),則點(diǎn)C的坐標(biāo)為( )

A. (2,2) B. (1,2) C. 2 D. (2,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鄧小平誕辰110周年獻(xiàn)禮,廣安市政府對(duì)城市建設(shè)進(jìn)行了整改,如圖,已知斜坡AB長(zhǎng)60米,坡角(即∠BAC)45°,BCAC,現(xiàn)計(jì)劃在斜坡中點(diǎn)D處挖去部分斜坡,修建一個(gè)平行于水平線CA的休閑平臺(tái)DE和一條新的斜坡BE(下面兩個(gè)小題結(jié)果都保留根號(hào))

(1)若修建的斜坡BE的坡比為1,求休閑平臺(tái)DE的長(zhǎng)是多少米?

(2)一座建筑物GH距離A點(diǎn)33米遠(yuǎn)(AG33),小亮在D點(diǎn)測(cè)得建筑物頂部H的仰角(即∠HDM)30°.點(diǎn)BC、A、G,H在同一個(gè)平面內(nèi),點(diǎn)CA、G在同一條直線上,且HGCG,問建筑物GH高為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AB=10,AC=6.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線ACCB運(yùn)動(dòng),在邊AC上以每秒3個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),在邊BC上以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),到點(diǎn)B停止,當(dāng)點(diǎn)P不與△ABC的頂點(diǎn)重合時(shí),過點(diǎn)P作其所在直角邊的垂線交AB于點(diǎn)Q;以Q為直角頂點(diǎn)向PQ右側(cè)作RtPQD,且QD=PQ.設(shè)△PQD與△ABC重疊部分圖形的面積為S,點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s)

1)當(dāng)點(diǎn)P在邊AC上時(shí),求PQ的長(zhǎng)(t的代數(shù)式表示);

2)點(diǎn)D落在邊BC上時(shí),求t的值;

3)求St之間的函數(shù)關(guān)系式;

4)設(shè)PD的中點(diǎn)為E,作直線CE.當(dāng)直線CE將△PQD的面積分成15兩部分時(shí),直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與軸分別交于、兩點(diǎn),與軸交于點(diǎn),.則由拋物線的特征寫出如下結(jié)論:①;②;③;④.其中正確的個(gè)數(shù)是()

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案