【題目】如圖,在邊長(zhǎng)為1的小正方形網(wǎng)格中,點(diǎn)A,B,CD都在這些小正方形上,ABCD相交于點(diǎn)O,則tanAOD等于( 。

A. B. 2C. 1D.

【答案】B

【解析】

連接BE,與CD交于點(diǎn)F,根據(jù)正方形的性質(zhì)可得BFCF,證明ACO∽△BHO,根據(jù)相似三角形的性質(zhì)可得HOCO=BHAC=13,得到

RtOBF中,求出tanBOF==2,即可求出tanAOD.

解:如圖,連接BE,與CD交于點(diǎn)F,

∵四邊形BCEH是正方形,

CH=BE,BECH

BFCF,

ACBH,

∴△ACO∽△BHO,

HOCO=BHAC=13

CF=HF,

HOHF12

RtOBF中,tanBOF==2,

∵∠AOD=∠BOF,

tanAOD2

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】初二年級(jí)教師對(duì)試卷講評(píng)課中學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)査,其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初二學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問題:

1)在這次評(píng)價(jià)中,一共抽査了   名學(xué)生;

2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為   度;

3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整:

4)如果全市有30000名初二學(xué)生,那么在試卷評(píng)講課中,請(qǐng)估計(jì)“獨(dú)立思考”的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】央視經(jīng)典詠流傳開播以來(lái)受到社會(huì)廣泛關(guān)注.我市某校就中華文化我傳承——地方戲曲進(jìn)校園的喜愛情況進(jìn)行了隨機(jī)調(diào)查,對(duì)收集的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩副尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問題:

圖中A表示很喜歡”,B表示喜歡”,C表示一般”,D表示不喜歡”.

(1)被調(diào)查的總?cè)藬?shù)是_____________人,扇形統(tǒng)計(jì)圖中C部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為_______.

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共有學(xué)生1800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中A類有__________人;

(4)在抽取的A5人中,剛好有3個(gè)女生2個(gè)男生,從中隨機(jī)抽取兩個(gè)同學(xué)擔(dān)任兩角色,用樹形圖或列表法求出被抽到的兩個(gè)學(xué)生性別相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠BCD,AC⊥ABEBC的中點(diǎn),AD⊥AE

1)求證:AC2=CD·BC;

2)過EEG⊥AB,并延長(zhǎng)EG至點(diǎn)K,使EK=EB

若點(diǎn)H是點(diǎn)D關(guān)于AC的對(duì)稱點(diǎn),點(diǎn)FAC的中點(diǎn),求證:FH⊥GH;

∠B=30°,求證:四邊形AKEC是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018新技術(shù)支持未來(lái)教育的教師培訓(xùn)活動(dòng)中,會(huì)議就面向未來(lái)的學(xué)校教育、家庭教育及實(shí)踐應(yīng)用演示等問題進(jìn)行了互動(dòng)交流,記者隨機(jī)采訪了部分參會(huì)教師,對(duì)他們發(fā)言的次數(shù)進(jìn)行了統(tǒng)計(jì),并繪制了不完整的統(tǒng)計(jì)表和條形統(tǒng)計(jì)圖.

組別

發(fā)言次數(shù)n

百分比

A

0≤n<3

10%

B

3≤n<6

20%

C

6≤n<9

25%

D

9≤n<12

30%

E

12≤n<15

10%

F

15≤n<18

m%

請(qǐng)你根據(jù)所給的相關(guān)信息,解答下列問題:

(1)本次共隨機(jī)采訪了 _____ 名教師,m= _____ ;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)已知受訪的教師中,E組只有2名女教師,F組恰有1名男教師,現(xiàn)要從E組、F組中分別選派1名教師寫總結(jié)報(bào)告,請(qǐng)用列表法或畫樹狀圖的方法,求所選派的兩名教師恰好是11女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)ABxm,花園的面積為Sm2

1)若花園的面積為192m2,求x的值;

2)寫出花園面積Sx的函數(shù)關(guān)系式.x為何值時(shí),花園面積S有最大值?最大值為多少?

3)若在P處有一棵樹與墻CD,AD的距離分別是a14a22)和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),設(shè)花園面積S的最大值為y,直接寫出ya的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市舉行“行動(dòng)起來(lái),對(duì)抗霧霾”為主題的植樹活動(dòng),某街道積極響應(yīng),決定對(duì)該街道進(jìn)行綠化改造,共購(gòu)進(jìn)甲、乙兩種樹共50棵,已知甲樹每棵800元,乙樹每棵1200元.

1)若購(gòu)買兩種樹的總金額為56000元,求甲、乙兩種樹各購(gòu)買了多少棵?

2)若購(gòu)買甲樹的金額不少于購(gòu)買乙樹的金額,至少應(yīng)購(gòu)買甲樹多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1的解析表達(dá)式為:y=﹣3x+3,且l1x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A、B,直線l1l2交于點(diǎn)C

1)求點(diǎn)D的坐標(biāo);

2)求直線l2的解析表達(dá)式;

3)求△ADC的面積;

4)在l2上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP△ADC面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知A(,y1),B(2,y2)為反比例函數(shù)圖像上的兩點(diǎn),動(dòng)點(diǎn)P(x,0)x正半軸上運(yùn)動(dòng),當(dāng)線段AP與線段BP之差達(dá)到最大時(shí),點(diǎn)P的坐標(biāo)是(

A. (,0) B. (1,0) C. (,0) D. (,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案