【題目】如圖,直線l1l2l3,一等腰直角三角形ABC的三個頂點(diǎn)ABC分別在l1,l2,l3上,∠ACB=90°,ACl2與點(diǎn)D.已知l1l2的距離為1,l2l3的距離為3,則線段CD的長等于______

【答案】

【解析】

BFl3F,AEl3E交直線BDG.證△ACE≌△CBFAAS),得CE=BFCF=AE,根據(jù)勾股定理求出AC,l2l3,得.

解:如圖,作BFl3FAEl3E交直線BDG

∵∠ACB=CFB=AEC=90°,

∴∠BCF+ACE=90°

∵∠BCF+CBF=90°,

∴∠ACE=CBF,

在△ACE和△CBF中,

,

∴△ACE≌△CBFAAS),

CE=BF,CF=AE,

l1l2的距離為1l2l3的距離為3,

AG=1,BF=GE=3,AE=4

CE=BF=3,

AC==5

l2l3,

CD=,

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】牛牛和峰峰在同一直線跑道AB上進(jìn)行往返跑,牛牛從起點(diǎn)A出發(fā),峰峰在牛牛前方C處與牛牛同時出發(fā),當(dāng)牛牛超越峰峰到達(dá)終點(diǎn)B處時,休息了100秒才又以原速返回A地,而峰峰到達(dá)終點(diǎn)B處后馬上以原來速度的3.2倍往回跑,最后兩人同時到達(dá)A地,兩人距B地的路程記為y(米),峰峰跑步時間記為x(秒),yx的函數(shù)關(guān)系如圖所示,則牛牛和峰峰第一次相遇時他們距A點(diǎn)_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠ABC90°

(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請標(biāo)明字母)

①作線段AC的垂直平分線l,交AC于點(diǎn)O

②連接BO并延長,在BO的延長線上截取OD,使得ODOB;

③連接DADC

(2)試判斷AD、CD的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠A=60°,BMAC于點(diǎn)MCNAB于點(diǎn)N,BM,CN交于點(diǎn)O,連接MN.下列結(jié)論:①∠AMN=ABC;②圖中共有8對相似三角形;③BC=2MN.其中正確的個數(shù)是( 。

A. 1B. 2C. 3D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2=0①有兩個不等的實(shí)數(shù)根.

k的取值范圍;

若方程的兩根的平方和為7,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2-mx+m2-2m為大于0的常數(shù))與x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))

1)若點(diǎn)A的坐標(biāo)為(1,0

①求拋物線的表達(dá)式;

②當(dāng)nx≤2時,函數(shù)值y的取值范圍是-y≤5-n,求n的值;

2)將拋物線在x軸下方的部分沿x軸翻折,得到新的函數(shù)的圖象,如圖,當(dāng)2x3時,若此函數(shù)的值隨x的增大而減小,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,ACBC4P是△ABC的高CD上一個動點(diǎn),以B點(diǎn)為旋轉(zhuǎn)中心把線段BP逆時針旋轉(zhuǎn)45°得到BP′,連接DP′,則DP′的最小值是(  )

A.2-2B.42C.2D.-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AD平分∠BACBC于點(diǎn)D,點(diǎn)EAB上,以AE為直徑的⊙O經(jīng)過點(diǎn)D

1)求證:直線BC是⊙O的切線;

2)若∠B=30°,AC=3,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線yax2+bx+ca≠0)經(jīng)過點(diǎn)A10.B4,0),C02)三點(diǎn),直線ykx+t經(jīng)過B.C兩點(diǎn),點(diǎn)D是拋物線上一個動點(diǎn),過點(diǎn)Dy軸的平行線,與直線BC相交于點(diǎn)E

1)求直線和拋物線的解析式;

2)當(dāng)點(diǎn)D在直線BC下方的拋物線上運(yùn)動,使線段DE的長度最大時,求點(diǎn)D的坐標(biāo);

3)點(diǎn)D在運(yùn)動過程中,若使O.C.D.E為頂點(diǎn)的四邊形為平行四邊形時,請直接寫出滿足條件的所有點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案