【題目】如圖所示,是兩種長方形鋁合金窗框,已知窗框的長都是y米,窗框的寬都是x米,若一用戶需(1)型的窗框2個,(2)型的窗框2個.

(1)用含x、y的式子表示共需鋁合金的長度;

(2)若1m鋁合金的平均費用為100元,求當(dāng)x=1.2,y=1.5時,鋁合金的總費用為多少元?

【答案】(1)共需鋁合金的長度為(10x+8y)米;(2)鋁合金的總費用為2400元.

【解析】試題分析:(1)根據(jù)題意列出算式,去掉括號后合并即可;

(2)代入求出總長度,再乘以100即可.

試題解析:(1)共需鋁合金的長度為:2(3x+2y)+2(2x+2y)=(10x+8y)米;

(2)∵1m鋁合金的平均費用為100元,x=1.2,y=1.5,

∴鋁合金的總費用為100×(10×1.2+8×1.5)=2400(元).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知下列有理數(shù):,-4,2.5,-1,0,3,,5

1)畫數(shù)軸,并在數(shù)軸上表示這些數(shù):

2)這些數(shù)中最小的數(shù)是________,指出這些數(shù)中互為相反數(shù)的兩個數(shù)之間所有的整數(shù)共有________

3)計算出,-4,2.5,-1,0,3,5這些數(shù)的和的絕對值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,CAB上一點,點D,E分別在AB兩側(cè),ADBE,且ADBC,BEAC

1)求證:CDCE

2)連接DE,交AB于點F,猜想BEF的形狀,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2﹣2x+3與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1關(guān)于點B的中心對稱得C2,C2與x軸交于另一點C,將C2關(guān)于點C的中心對稱得C3,連接C1與C3的頂點,則圖中陰影部分的面積為_____

【答案】32

【解析】試題分析:拋物線y=﹣x2﹣2x+3x軸交于點AB,

當(dāng)y=0時,則﹣x2﹣2x+3=0

解得x=﹣3x=1,

A,B的坐標(biāo)分別為(﹣3,0),(1,0),

AB的長度為4,

C1,C3兩個部分頂點分別向下作垂線交x軸于E、F兩點.

根據(jù)中心對稱的性質(zhì),x軸下方部分可以沿對稱軸平均分成兩部分補(bǔ)到C1C2

如圖所示,陰影部分轉(zhuǎn)化為矩形.

根據(jù)對稱性,可得BE=CF=4÷2=2,則EF=8

利用配方法可得y=﹣x2﹣2x﹣3=﹣x+12+4

則頂點坐標(biāo)為(﹣1,4),即陰影部分的高為4

S=8×4=32

考點:拋物線與x軸的交點.

型】填空
結(jié)束】
17

【題目】解方程:(1)2(3x﹣1)=16;(2);(3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點稱為整點.請你觀察圖中正方形A1B1C1D1A2B2C2D2,A3B3C3D3…每個正方形四條邊上的整點的個數(shù).按此規(guī)律推算出正方形A10B10C10D10四條邊上的整點共有______個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前微信支付寶、共享單車網(wǎng)購給我們帶來了很多便利,初二數(shù)學(xué)小組在校內(nèi)對你最認(rèn)可的四大新生事物進(jìn)行了調(diào)查,隨機(jī)調(diào)查了人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.

1)根據(jù)圖中信息求出=___________,=_____________;

2)請你幫助他們將這兩個統(tǒng)計圖補(bǔ)全;

3)根據(jù)抽樣調(diào)查的結(jié)果,請估算全校2000名學(xué)生種,大約有多少人最認(rèn)可微信這一新生事物?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a是一個三角形,分別連接這個三角形三邊的中點得到圖b;再分別連接圖b中間小三角形的三邊的中點,得到圖c

1)圖b   個三角形,圖c   個三角形.

2)按上面的方法繼續(xù)下去,第n個圖形中有多少個三角形(用n的代數(shù)式表示結(jié)論).

3)當(dāng)n10時,第10個圖形中有多少個三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線ACBD交于點O,OA,OD滿足等式+OA-52=0AD=13.

1)求證:平行四邊形ABCD是菱形;

2)過點DDEACBC的延長線于點EDF平分∠BDE,請求出DF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 A、B 在數(shù)軸上分別表示有理數(shù) a、bA、B 兩點之間的距離表示為 AB, 在數(shù)軸上 A、B 兩點之間的距離 AB=|ab|

請用上面的知識解答下面的問題:

1)數(shù)軸上表示 1 5 的兩點之間的距離是 ,數(shù)軸上表示﹣2 和﹣4 兩點之間的距離是 ,數(shù)軸上表示 1 和﹣3 的兩點之間的距離是

2)數(shù)軸上表示 x 和﹣1 的兩點 A B 之間的距離是 ,如果|AB|=2 那么 x ;

3|x+1|+|x2|取最小值是

查看答案和解析>>

同步練習(xí)冊答案