【題目】點(diǎn) A、B 在數(shù)軸上分別表示有理數(shù) a、b,A、B 兩點(diǎn)之間的距離表示為 AB 在數(shù)軸上 A、B 兩點(diǎn)之間的距離 AB=|ab|

請(qǐng)用上面的知識(shí)解答下面的問(wèn)題:

1)數(shù)軸上表示 1 5 的兩點(diǎn)之間的距離是 ,數(shù)軸上表示﹣2 和﹣4 兩點(diǎn)之間的距離是 ,數(shù)軸上表示 1 和﹣3 的兩點(diǎn)之間的距離是 ;

2)數(shù)軸上表示 x 和﹣1 的兩點(diǎn) A B 之間的距離是 ,如果|AB|=2 那么 x ;

3|x+1|+|x2|取最小值是

【答案】14;2;4;(2|x+1|1 或﹣3;(33

【解析】

1)依據(jù)數(shù)軸上 A、B 兩點(diǎn)之間的距離 AB=|ab|進(jìn)行計(jì)算即可;

2)數(shù)軸上 A、B 兩點(diǎn)之間的距離 AB=|ab|列出方程求解即可;

3|x+1|+|x2|取最小值表示數(shù)軸上某點(diǎn)到﹣1 2 的距離之和,從而可求 得最小值.

1)數(shù)軸上表示 1 5 的兩點(diǎn)之間的距離是=|51|=4; 數(shù)軸上表示﹣2 和﹣4 的兩點(diǎn)之間的距離=|2﹣(﹣4|=2; 數(shù)軸上表示 1 和﹣3 的兩點(diǎn)之間的距離是=|31|=4;

2)數(shù)軸上表示 x 和﹣1 的兩點(diǎn) A B 之間的距離=|x﹣(﹣1|=|x+1|;

∵|AB|=2,

∴x+1=±2

解得:x=1 x=3

3|x+1|+|x2|表示數(shù)軸上某點(diǎn)到﹣1 2 的距離之和.

當(dāng)﹣1≤x≤2 時(shí),|x+1|+|x2|有最小值,最小值為 3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,是兩種長(zhǎng)方形鋁合金窗框,已知窗框的長(zhǎng)都是y米,窗框的寬都是x米,若一用戶需(1)型的窗框2個(gè),(2)型的窗框2個(gè).

(1)用含x、y的式子表示共需鋁合金的長(zhǎng)度;

(2)若1m鋁合金的平均費(fèi)用為100元,求當(dāng)x=1.2,y=1.5時(shí),鋁合金的總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在筆直的道路上相向而行,甲騎自行車(chē)從地到地,乙駕車(chē)從地到地,假設(shè)他們分別以不同的速度勻速行駛,甲先出6分鐘后,乙才出發(fā),乙的速度為千米/分,在整個(gè)過(guò)程中,甲、乙兩人之間的距離(千米)與甲出發(fā)的時(shí)間(分)之間的部分函數(shù)圖象如圖.

1兩地相距______千米,甲的速度為______千米/分;

2)直接寫(xiě)出點(diǎn)的坐標(biāo)______,求線段所表示的之間的函數(shù)表達(dá)式;

3)當(dāng)乙到達(dá)終點(diǎn)時(shí),甲還需______分鐘到達(dá)終點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E、FBD上,且BFDE

1)寫(xiě)出圖中所有你認(rèn)為全等的三角形;

2)延長(zhǎng)AEBC的延長(zhǎng)線于G,延長(zhǎng)CFDA的延長(zhǎng)線于H(請(qǐng)補(bǔ)全圖形),證明四邊形AGCH是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,,,直線經(jīng)過(guò)點(diǎn),且,.

(1)當(dāng)直線繞點(diǎn)旋轉(zhuǎn)到圖1的位置時(shí),

①求證:△ADC≌△CEB.

②求證:DE=AD+BE.

(2)當(dāng)直線繞點(diǎn)旋轉(zhuǎn)到圖2的位置時(shí),判斷的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,平面直角坐標(biāo)系xOy中,B0,1),OBOCOA,AC分別在x軸的正負(fù)半軸上.過(guò)點(diǎn)C的直線繞點(diǎn)C旋轉(zhuǎn),交y軸于點(diǎn)D,交線段AB于點(diǎn)E

1)求∠OAB的度數(shù)及直線AB的解析式;

2)若△OCD與△BDE的面積相等,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,∠B的平分線BEAD交于點(diǎn)E,BED的平分線EFDC交于點(diǎn)F,當(dāng)點(diǎn)FCD的中點(diǎn)時(shí),若AB=4,則BC=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,反比例函數(shù)y(x0),過(guò)點(diǎn)A(3,4)

(1)y關(guān)于x的函數(shù)表達(dá)式.

(2)求當(dāng)y≥2時(shí),自變量x的取值范圍.

(3)x軸上有一點(diǎn)P(1,0),在反比例函數(shù)圖象上有一個(gè)動(dòng)點(diǎn)Q,以PQ為一邊作一個(gè)正方形PQRS,當(dāng)正方形PQRS有兩個(gè)頂點(diǎn)在坐標(biāo)軸上時(shí),畫(huà)出狀態(tài)圖并求出相應(yīng)S點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李叔叔在“中央山水”買(mǎi)了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,這套住宅的建筑平面(由四個(gè)長(zhǎng)方形組成)如圖所示(圖中長(zhǎng)度單位:米),請(qǐng)解答下問(wèn)題:

1)用式子表示這所住宅的總面積;

2)若鋪1平方米地磚平均費(fèi)用120元,求當(dāng)x=6時(shí),這套住宅鋪地磚總費(fèi)用為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案