【題目】目前微信、支付寶、共享單車網(wǎng)購給我們帶來了很多便利,初二數(shù)學小組在校內對你最認可的四大新生事物進行了調查,隨機調查了人(每名學生必選一種且只能從這四種中選擇一種)并將調查結果繪制成如下不完整的統(tǒng)計圖.

1)根據(jù)圖中信息求出=___________,=_____________

2)請你幫助他們將這兩個統(tǒng)計圖補全;

3)根據(jù)抽樣調查的結果,請估算全校2000名學生種,大約有多少人最認可微信這一新生事物?

【答案】1)100,35;(2)詳見解析;(3800人.

【解析】

1)由共享單車的人數(shù)以及其所占百分比可求得總人數(shù)m,用支付寶人數(shù)除以總人數(shù)可得其百分比n的值;

2)總人數(shù)乘以網(wǎng)購的百分比可求得網(wǎng)購人數(shù),用微信人數(shù)除以總人數(shù)求得其百分比,由此即可補全兩個圖形;

3)總人數(shù)乘以樣本中微信人數(shù)所占百分比即可求得答案.

1)抽查的總人數(shù)m=10÷10%=100,

支付寶的人數(shù)所占百分比n%==35%,所以n=35,

故答案為:10035;

2)網(wǎng)購人數(shù)為:100×15%=15人,

微信對應的百分比為:,

補全圖形如圖所示:

3)估算全校2000名學生種,最認可微信這一新生事物的人數(shù)為:2000×40%=800人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小李和小陸從 A 地出發(fā),騎自行車沿同一條路行駛到 B 地,他們離出發(fā)地的距離 s和行駛時間t之間的關系的圖象如圖,根據(jù)圖象回答下列問題:

(1) 小李在途中逗留的時間為___________h,小陸從 A 地到 B 地的速度是________km/h;

(2) 當小李和小陸相遇時,他們離 B 地的路程是____________千米;

(3) 寫出小李在逗留之前離 A 地的路程s和行駛時間t之間的函數(shù)關系式為_____________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學舉辦網(wǎng)絡安全知識答題競賽,七、八年級根據(jù)初賽成績各選出5名選手組成代表隊參加決賽,兩個隊各選出的5名選手的決賽成績如圖所示.

平均分(分)

中位數(shù)(分)

眾數(shù)(分)

方差(分2

七年級

a

85

b

S七年級2

八年級

85

c

100

160

1)根據(jù)圖示填空:a   b   ,c   

2)結合兩隊成績的平均數(shù)和中位數(shù)進行分析,哪個代表隊的決賽成績較好?

3)計算七年級代表隊決賽成績的方差S七年級2,并判斷哪一個代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在銳角ABC中,ABC=45°,高線AD、BE相交于點F.

(1)判斷BF與AC的數(shù)量關系并說明理由;

(2)如圖2,將ACD沿線段AD對折,點C落在BD上的點M,AM與BE相交于點N,當DEAM時,判斷NE與AC的數(shù)量關系并說明理由.

【答案】(1)BF=AC,理由見解析;2NE=AC,理由見解析.

【解析】試題分析:(1)如圖1,證明△ADC≌△BDF(AAS),可得BF=AC;
(2)如圖2,由折疊得:MD=DC,先根據(jù)三角形中位線的推論可得:AE=EC,由線段垂直平分線的性質得:AB=BC,則∠ABE=∠CBE,結合(1)得:△BDF≌△ADM,則∠DBF=∠MAD,最后證明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.

試題解析:

1BF=AC,理由是:

如圖1ADBC,BEAC

∴∠ADB=AEF=90°

∵∠ABC=45°,

∴△ABD是等腰直角三角形,

AD=BD

∵∠AFE=BFD,

∴∠DAC=EBC,

ADCBDF中,

,

∴△ADC≌△BDFAAS),

BF=AC;

2NE=AC,理由是:

如圖2,由折疊得:MD=DC,

DEAM

AE=EC,

BEAC

AB=BC,

∴∠ABE=CBE,

由(1)得:ADC≌△BDF

∵△ADC≌△ADM,

∴△BDF≌△ADM

∴∠DBF=MAD,

∵∠DBA=BAD=45°

∴∠DBA﹣DBF=BAD﹣MAD,

即∠ABE=BAN,

∵∠ANE=ABE+BAN=2ABE

NAE=2NAD=2CBE

∴∠ANE=NAE=45°,

AE=EN,

EN=AC

型】解答
束】
19

【題目】某校學生會決定從三明學生會干事中選拔一名干事當學生會主席,對甲、乙、丙三名候選人進行了筆試和面試,三人的測試成績如下表所示:

測試項目

測試成績/分

筆試

75

80

90

面試

93

70

68

根據(jù)錄用程序,學校組織200名學生采用投票推薦的方式,對三人進行民主測評,三人得票率如扇形統(tǒng)計圖所示(沒有棄權,每位同學只能推薦1人),每得1票記1分

(1)分別計算三人民主評議的得分;

(2)根據(jù)實際需要,學校將筆試、面試、民主評議三項得分按3:3:4的比例確定個人成績,三人中誰會當選學生會主席?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,是兩種長方形鋁合金窗框,已知窗框的長都是y米,窗框的寬都是x米,若一用戶需(1)型的窗框2個,(2)型的窗框2個.

(1)用含x、y的式子表示共需鋁合金的長度;

(2)若1m鋁合金的平均費用為100元,求當x=1.2,y=1.5時,鋁合金的總費用為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A04)是直角坐標系y軸上一點,動點P從原點O出發(fā),沿x軸正半軸運動,速度為每秒1個單位長度,以P為直角頂點在第一象限內作等腰RtAPB.設P點的運動時間為t秒.

1)若AB//x軸,求t的值;

2)當t=3時,坐標平面內有一點M(不與A重合),使得以M、PB為頂點的三角形和△ABP全等,請求出點M的坐標;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),平面直角坐標系中,點A、B分別在x、y軸上,點B的坐標為(0,1),∠BAO=30°.

1)求AB的長度;

2)以AB為一邊作等邊△ABE,作OA的垂直平分線MNAB的垂線AD于點,求證:BD=OE

3)在(2)的條件下,連接DEABF,求證:FDE的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線x軸、y軸分別交于A、B兩點,點Cy軸上一點將坐標平面沿直線AC折疊,使點B剛好落在x負半軸上,則點C的坐標為  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,平面直角坐標系xOy中,B0,1),OBOCOAA、C分別在x軸的正負半軸上.過點C的直線繞點C旋轉,交y軸于點D,交線段AB于點E

1)求∠OAB的度數(shù)及直線AB的解析式;

2)若△OCD與△BDE的面積相等,求點D的坐標.

查看答案和解析>>

同步練習冊答案