【題目】如圖,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分別為AC、AD上兩動(dòng)點(diǎn),連接CF、EF,則CF+EF的最小值為_____.
【答案】
【解析】
作BM⊥AC于M,交AD于F,根據(jù)三線合一定理求出BD的長和AD⊥BC,根據(jù)三角形面積公式求出BM,根據(jù)對稱性質(zhì)求出BF=CF,根據(jù)垂線段最短得出CF+EF≥BM,即可得出答案.
作BM⊥AC于M,交AD于F,
∵AB=AC=5,BC=6,AD是BC邊上的中線,
∴BD=DC=3,AD⊥BC,AD平分∠BAC,
∴B、C關(guān)于AD對稱,
∴BF=CF,
根據(jù)垂線段最短得出:CF+EF=BF+EF≥BF+FM=BM,
即CF+EF≥BM,
∵S△ABC=×BC×AD=×AC×BM,
∴BM=,
即CF+EF的最小值是,
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016甘肅省白銀市)如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點(diǎn)上.
(1)畫出△ABC關(guān)于x軸的對稱圖形△A1B1C1;
(2)將△A1B1C1沿x軸方向向左平移3個(gè)單位后得到△A2B2C2,寫出頂點(diǎn)A2,B2,C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司需要采購A、B兩種筆記本,A種筆記本的單價(jià)高出B種筆記本的單價(jià)10元,并且花費(fèi)300元購買A種筆記本和花費(fèi)100元購買B種筆記本的數(shù)量相等.
(1)求A種筆記本和B種筆記本的單價(jià)各是多少元;
(2)該公司準(zhǔn)備采購A、B兩種筆記本共80本,若A種筆記本的數(shù)量不少于60本,并且采購A、B兩種筆記本的總費(fèi)用不高于1100元,那么該公司有 種購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)分別交y軸、x軸于A、B兩點(diǎn),拋物線y=﹣x2+bx+c過A、B兩點(diǎn).
(1)求這個(gè)拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個(gè)拋物線于N.求當(dāng)t取何值時(shí),MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,求第四個(gè)頂點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與直線都經(jīng)過、兩點(diǎn),該拋物線的頂點(diǎn)為C.
(1)求此拋物線和直線的解析式;
(2)設(shè)直線與該拋物線的對稱軸交于點(diǎn)E,在射線上是否存在一點(diǎn)M,過M作x軸的垂線交拋物線于點(diǎn)N,使點(diǎn)M、N、C、E是平行四邊形的四個(gè)頂點(diǎn)?若存在,求點(diǎn)M的坐標(biāo);若不存在,請說明理由;
(3)設(shè)點(diǎn)P是直線下方拋物線上的一動(dòng)點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)P的坐標(biāo),并求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形 ABCD 中,CE⊥BD,AB=4,BC=3,P 為 BD 上一個(gè)動(dòng)點(diǎn),以 P 為圓心,PB 長半徑作⊙P,⊙P 交 CE、BD、BC 交于 F、G、H(任意兩點(diǎn)不重合),
(1)半徑 BP 的長度范圍為 ;
(2)連接 BF 并延長交 CD 于 K,若 tan KFC 3 ,求 BP;
(3)連接 GH,將劣弧 HG 沿著 HG 翻折交 BD 于點(diǎn) M,試探究是否為定值,若是求出該值,若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓O的半徑為3cm,B為圓O外一點(diǎn),OB交圓O于A,AB=OA,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以πcm/s的速度在圓O上按逆時(shí)針方向運(yùn)動(dòng)一周回到點(diǎn)A立即停止.當(dāng)點(diǎn)P運(yùn)動(dòng)的時(shí)間為( )秒時(shí),BP與圓O相切.
A.1sB.5sC.1s或 5sD.2s或 4s
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),過二次函數(shù)y=﹣x2+4x圖象上的點(diǎn)A(3,3)作x軸的垂線交x軸于點(diǎn)B.
(1)如圖1,P為線段OA上方拋物線上的一點(diǎn),在x軸上取點(diǎn)C(1,0),點(diǎn)M、N為y軸上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M在點(diǎn)N的上方且MN=1.連接AC,當(dāng)四邊形PACO的面積最大時(shí),求PM+MNNO的最小值.
(2)如圖2,點(diǎn)Q(3,1)在線段AB上,作射線CQ,將△AQC沿直線AB翻折,C點(diǎn)的對應(yīng)點(diǎn)為C',將△AQC'沿射線CQ平移3個(gè)單位得△A'Q'C″,在射線CQ上取一點(diǎn)M,使得以A'、M、C″為頂點(diǎn)的三角形是等腰三角形,求M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣2,0),點(diǎn)B(4,0),與y軸交于點(diǎn)C(0,8),連接BC,又已知位于y軸右側(cè)且垂直于x軸的動(dòng)直線l,沿x軸正方向從O運(yùn)動(dòng)到B(不含O點(diǎn)和B點(diǎn)),且分別交拋物線、線段BC以及x軸于點(diǎn)P,D,E.
(1)求拋物線的表達(dá)式;
(2)連接AC,AP,當(dāng)直線l運(yùn)動(dòng)時(shí),求使得△PEA和△AOC相似的點(diǎn)P的坐標(biāo);
(3)作PF⊥BC,垂足為F,當(dāng)直線l運(yùn)動(dòng)時(shí),求Rt△PFD面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com