0  983  991  997  1001  1007  1009  1013  1019  1021  1027  1033  1037  1039  1043  1049  1051  1057  1061  1063  1067  1069  1073  1075  1077  1078  1079  1081  1082  1083  1085  1087  1091  1093  1097  1099  1103  1109  1111  1117  1121  1123  1127  1133  1139  1141  1147  1151  1153  1159  1163  1169  1177  3002 

本資料來(lái)源于《七彩教育網(wǎng)》http://www.7caiedu.cn

                       2009年中考語(yǔ)文全真模擬試題

試題詳情

本資料來(lái)源于《七彩教育網(wǎng)》http://www.7caiedu.cn

2009中考語(yǔ)文模擬試卷

(滿分150分,120分鐘完卷)

班級(jí)   姓名   得分    

題號(hào)

總分

評(píng)卷人

 

(一)

(二)

 

(一)

(二)

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

倉(cāng)中學(xué)、南洋中學(xué)高三第一次聯(lián)考

    2009屆高三月考物理試卷  2008.09

試題詳情

通州市2009屆高三第一次調(diào)研測(cè)試

物 理 試 卷

(滿分120分,時(shí)間100分鐘)

試題詳情

2009屆高考數(shù)學(xué)壓軸題預(yù)測(cè)

專(zhuān)題六  導(dǎo)  數(shù)

1.       設(shè)函數(shù),(1)若當(dāng)時(shí),取得極值,求的值,并討論的單調(diào)性;(2)若存在極值,求的取值范圍,并證明所有極值之和大于

解析:(1),依題意有,故

從而

的定義域?yàn)?sub>,當(dāng)時(shí),;

當(dāng)時(shí),;當(dāng)時(shí),

從而,分別在區(qū)間單調(diào)增加,在區(qū)間單調(diào)減少.

(2)的定義域?yàn)?sub>,

方程的判別式

①若,即,在的定義域內(nèi),故的極值.

②若,則.若,,

當(dāng)時(shí),,當(dāng)時(shí),,所以無(wú)極值.若,也無(wú)極值.

③若,即,則有兩個(gè)不同的實(shí)根

當(dāng)時(shí),,從而的定義域內(nèi)沒(méi)有零點(diǎn),故無(wú)極值.

當(dāng)時(shí),,,的定義域內(nèi)有兩個(gè)不同的零點(diǎn),由根值判別方法知取得極值.

綜上,存在極值時(shí),的取值范圍為的極值之和為

答案: (1);(2)見(jiàn)詳解。

點(diǎn)評(píng):本題主要考查對(duì)極值概念的理解以及對(duì)函數(shù)導(dǎo)數(shù)的綜合運(yùn)用。

2.       已知函數(shù)處取得極值2。

   (Ⅰ)求函數(shù)的解析式;

   (Ⅱ)當(dāng)m滿足什么條件時(shí),在區(qū)間為增函數(shù);

   (Ⅲ)若圖象上任意一點(diǎn),直線的圖象切于P點(diǎn),求直線L的斜率的取值范圍。

解:(Ⅰ)

由已知

 

   (Ⅱ)

   (Ⅲ)直線I在P點(diǎn)的切線斜率

當(dāng)

3.       設(shè)的兩個(gè)極值點(diǎn),的導(dǎo)函數(shù)是

(Ⅰ)如果 ,求證:  ;

(Ⅱ)如果 ,求的取值范圍 ;

(Ⅲ)如果 ,且時(shí),函數(shù)的最小值為 ,求的最大值。

(I)證明:  是方程的兩個(gè)根   1分

         2分

                                         

                            3分

(Ⅱ)解:由第(1)問(wèn)知 ,兩式相除得

 即        4分

①當(dāng)時(shí),由  即

 ,                  5分

令函數(shù),則

上是增函數(shù)

當(dāng)時(shí), ,即  7分

②當(dāng)時(shí),  即

令函數(shù)則同理可證上是增函數(shù)

當(dāng)時(shí),           

綜①②所述,的取值范圍是           

(Ⅲ)解:的兩個(gè)根是 ,可設(shè)

          10分

           又

          

                         

             g(x)

          當(dāng)且僅當(dāng) ,即 時(shí)取等號(hào)

          當(dāng)時(shí),

         上是減函數(shù)

                            

 

 

試題詳情

蘇北四市2009屆高三第一次調(diào)研考試

物 理 試 題

本卷?分120分,考試時(shí)間100分鐘.請(qǐng)將答案填寫(xiě)在答題卡上,直接寫(xiě)在試卷上不得分.

試題詳情

南通中學(xué)2008-2009年度第二次調(diào)研測(cè)試

物理試卷

第一卷(選擇題共31分)

試題詳情

2009屆高考數(shù)學(xué)壓軸題預(yù)測(cè)

專(zhuān)題1  函數(shù)

考點(diǎn)一:函數(shù)的性質(zhì)與圖象

1.       已知,函數(shù)。設(shè),記曲線在點(diǎn)處的切線為。w.w.w.k.s.5.u.c.o.m  

(Ⅰ)求的方程;

(Ⅱ)設(shè)軸交點(diǎn)為。證明:

;

② 若,則

(Ⅰ)分析:欲求切線的方程,則須求出它的斜率,根據(jù)切線斜率的幾何意義便不難發(fā)現(xiàn),問(wèn)題歸結(jié)為求曲線在點(diǎn)的一階導(dǎo)數(shù)值。

解:求的導(dǎo)數(shù):,由此得切線的方程:

。

(Ⅱ)分析:①要求的變化范圍,則須找到使產(chǎn)生變化的原因,顯然,變化的根本原因可歸結(jié)為的變化,因此,找到的等量關(guān)系式,就成;② 欲比較的大小關(guān)系,判斷它們的差的符號(hào)即可。

證:依題意,切線方程中令y=0,

.

①                   由

.

點(diǎn)評(píng):本小題主要考查利用導(dǎo)數(shù)求曲線切線的方法,考查不等式的基本性質(zhì),以及分析和解決問(wèn)題的能力。

考點(diǎn)二:二次函數(shù)

2.       已知二次函數(shù),設(shè)方程的兩個(gè)實(shí)數(shù)根為.

(1)如果,設(shè)函數(shù)的對(duì)稱(chēng)軸為,求證:;

(2)如果,,求的取值范圍.

分析:條件實(shí)際上給出了的兩個(gè)實(shí)數(shù)根所在的區(qū)間,因此可以考慮利用上述圖像特征去等價(jià)轉(zhuǎn)化.

解:設(shè),則的二根為.

(1)由,可得  ,即,即

                       

兩式相加得,所以,;

(2)由, 可得  .

,所以同號(hào).

,等價(jià)于,

即  

解之得  .

點(diǎn)評(píng):在處理一元二次方程根的問(wèn)題時(shí),考察該方程所對(duì)應(yīng)的二次函數(shù)圖像特征的充要條件是解決問(wèn)題的關(guān)鍵。

考點(diǎn)三:抽象函數(shù)

3.       A是由定義在上且滿足如下條件的函數(shù)組成的集合:①對(duì)任意,都有 ; ②存在常數(shù),使得對(duì)任意的,都有

(Ⅰ)設(shè),證明:

(Ⅱ)設(shè),如果存在,使得,那么這樣的是唯一的;

(Ⅲ)設(shè),任取,令證明:給定正整數(shù)k,對(duì)任意的正整數(shù)p,成立不等式

解:對(duì)任意,,,所以

對(duì)任意的

,

,

所以0<

,,

所以

反證法:設(shè)存在兩個(gè)使得

,得,所以,矛盾,故結(jié)論成立。

,所以

+…

點(diǎn)評(píng):本題以高等數(shù)學(xué)知識(shí)為背景,與初等數(shù)學(xué)知識(shí)巧妙結(jié)合,考查了函數(shù)及其性質(zhì)、不等式性質(zhì),考查了特殊與一般、化歸與轉(zhuǎn)化等數(shù)學(xué)思想。

 

考點(diǎn)四:函數(shù)的綜合應(yīng)用

4.       設(shè)函數(shù)

(Ⅰ)求的最小值;

(Ⅱ)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

解:(Ⅰ)

當(dāng)時(shí),取最小值

(Ⅱ)令,

,(不合題意,舍去).

當(dāng)變化時(shí),的變化情況如下表:

(0,1)

(1,2)

遞增

極大值

遞減

內(nèi)有最大值

內(nèi)恒成立等價(jià)于內(nèi)恒成立,

即等價(jià)于,

所以的取值范圍為

點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性、極值以及函數(shù)導(dǎo)數(shù)的應(yīng)用,考查運(yùn)用數(shù)學(xué)知識(shí)分析問(wèn)題解決問(wèn)題的能力.

5.       乙兩地相距S千米,汽車(chē)從甲地勻速行駛到乙地,速度不得超過(guò)c千米/時(shí),已知汽車(chē)每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度 v(千米/時(shí))的平方成正比,比例系數(shù)為b;固定部分為a元.

 ① 把全程運(yùn)輸成本y(元)表示為速度v(千米/時(shí))的函數(shù),并指出函數(shù)的定義域;

 ② 為了使全程運(yùn)輸成本最小,汽車(chē)應(yīng)以多大速度行駛?    

分析:幾個(gè)變量(運(yùn)輸成本、速度、固定部分)有相互的關(guān)聯(lián),抽象出其中的函數(shù)關(guān)系,并求函數(shù)的最小值.

解:(讀題)由主要關(guān)系:運(yùn)輸總成本=每小時(shí)運(yùn)輸成本×?xí)r間,

(建模)有y=(a+bv)

(解題)所以全程運(yùn)輸成本y(元)表示為速度v(千米/時(shí))的函數(shù)關(guān)系式是:

y=S(+bv),其中函數(shù)的定義域是v∈(0,c] .

整理函數(shù)有y=S(+bv)=S(v+),

由函數(shù)y=x+ (k>0)的單調(diào)性而得:

當(dāng)<c時(shí),則v=時(shí),y取最小值;

當(dāng)≥c時(shí),則v=c時(shí),y取最小值.

綜上所述,為使全程成本y最小,當(dāng)<c時(shí),行駛速度應(yīng)為v=;當(dāng)≥c時(shí),行駛速度應(yīng)為v=c.

點(diǎn)評(píng):1.對(duì)于實(shí)際應(yīng)用問(wèn)題,可以通過(guò)建立目標(biāo)函數(shù),然后運(yùn)用解(證)不等式的方法求出函數(shù)的最大值或最小值,其中要特別注意蘊(yùn)涵的制約關(guān)系,如本題中速度v的范圍,一旦忽視,將出現(xiàn)解答不完整.此種應(yīng)用問(wèn)題既屬于函數(shù)模型,也可屬于不等式模型.

 

6.       設(shè)函數(shù).

(1)在區(qū)間上畫(huà)出函數(shù)的圖像;

(2)設(shè)集合. 試判斷集合之間的關(guān)系,并給出證明;

(3)當(dāng)時(shí),求證:在區(qū)間上,的圖像位于函數(shù)圖像的上方.

解:(1)

    (2)方程的解分別是,由于上單調(diào)遞減,在上單調(diào)遞增,因此

.

    由于

  (3)[解法一] 當(dāng)時(shí),.

           

              

               ,

       . 又,

       ①  當(dāng),即時(shí),取,

       .

      

       則

       ②  當(dāng),即時(shí),取,    .

    由 ①、②可知,當(dāng)時(shí),.

    因此,在區(qū)間上,的圖像位于函數(shù)圖像的上方.

    [解法二] 當(dāng)時(shí),.

    令 ,解得 ,

在區(qū)間上,當(dāng)時(shí),的圖像與函數(shù)的圖像只交于一點(diǎn); 當(dāng)時(shí),的圖像與函數(shù)的圖像沒(méi)有交點(diǎn).

如圖可知,由于直線過(guò)點(diǎn),當(dāng)時(shí),直線是由直線繞點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)得到. 因此,在區(qū)間上,的圖像位于函數(shù)圖像的上方. 

7.       設(shè)f(x)=3ax,f(0)>0,f(1)>0,求證:

(Ⅰ)a>0且-2<<-1;

(Ⅱ)方程f(x)=0在(0,1)內(nèi)有兩個(gè)實(shí)根.

(I)證明:因?yàn)?sub>,所以.

由條件,消去,得;

由條件,消去,得.

.

(II)拋物線的頂點(diǎn)坐標(biāo)為,

的兩邊乘以,得.

又因?yàn)?sub>

所以方程在區(qū)間內(nèi)分別有一實(shí)根。

故方程內(nèi)有兩個(gè)實(shí)根.

8.       已知定義域?yàn)?sub>的函數(shù)是奇函數(shù)。

(Ⅰ)求的值;

(Ⅱ)若對(duì)任意的,不等式恒成立,求的取值范圍;

解:(Ⅰ)因?yàn)?sub>是奇函數(shù),所以=0,即

          又由f(1)= -f(-1)知

     (Ⅱ)解法一:由(Ⅰ)知,易知

為減函數(shù)。又因是奇函數(shù),從而不等式:  

等價(jià)于,因為減函數(shù),由上式推得:

.即對(duì)一切有:

從而判別式

解法二:由(Ⅰ)知.又由題設(shè)條件得:         ,

  即。

整理得 

上式對(duì)一切均成立,從而判別式

9.       設(shè)函數(shù)f(x)=其中a為實(shí)數(shù).

(Ⅰ)若f(x)的定義域?yàn)镽,求a的取值范圍;

(Ⅱ)當(dāng)f(x)的定義域?yàn)镽時(shí),求f(x)的單減區(qū)間.

解:(Ⅰ)的定義域?yàn)?sub>,恒成立,,

,即當(dāng)時(shí)的定義域?yàn)?sub>

(Ⅱ),令,得

,得,又

時(shí),由;

當(dāng)時(shí),;當(dāng)時(shí),由,

即當(dāng)時(shí),的單調(diào)減區(qū)間為;

當(dāng)時(shí),的單調(diào)減區(qū)間為

10.    已知定義在正實(shí)數(shù)集上的函數(shù),其中.設(shè)兩曲線,有公共點(diǎn),且在該點(diǎn)處的切線相同.

(I)用表示,并求的最大值;

(II)求證:().

解:(Ⅰ)設(shè)在公共點(diǎn)處的切線相同.

,,由題意,

得:,或(舍去).

即有

,則.于是

當(dāng),即時(shí),

當(dāng),即時(shí),

為增函數(shù),在為減函數(shù),

于是的最大值為

(Ⅱ)設(shè),

為減函數(shù),在為增函數(shù),

于是函數(shù)上的最小值是

故當(dāng)時(shí),有,即當(dāng)時(shí),

 

試題詳情

  南京市第十三中學(xué)2008―2009學(xué)年度高三第二次三周考試物理試題

命題人:孟振洲    審核人:成小寅

友情提醒:本試卷?分120分,考試時(shí)間100分鐘.請(qǐng)將答案填寫(xiě)在答題卡上,直接寫(xiě)在試卷上不得分.

試題詳情

2009屆高考數(shù)學(xué)壓軸題預(yù)測(cè)

專(zhuān)題四  解析幾何

考點(diǎn)一  曲線(軌跡)方程的求法

1.       設(shè)上的兩點(diǎn),

滿足,橢圓的離心率短軸長(zhǎng)為2,0為坐標(biāo)原點(diǎn).

    (1)求橢圓的方程;

    (2)若直線AB過(guò)橢圓的焦點(diǎn)F(0,c),(c為半焦距),求直線AB的斜率k的值;

    (3)試問(wèn):△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.

 

 解析:本例(1)通過(guò),及之間的關(guān)系可得橢圓的方程;(2)從方程入手,通過(guò)直線方程與橢圓方程組成方程組并結(jié)合韋達(dá)定理;(3)要注意特殊與一般的關(guān)系,分直線的斜率存在與不存在討論。

 答案:(1)

橢圓的方程為 

   (2)設(shè)AB的方程為

由已知

    2

  (3)當(dāng)A為頂點(diǎn)時(shí),B必為頂點(diǎn).S△AOB=1    

當(dāng)A,B不為頂點(diǎn)時(shí),設(shè)AB的方程為y=kx+b

所以三角形的面積為定值.

  點(diǎn)評(píng):本題考查了直線與橢圓的基本概念和性質(zhì),二次方程的根與系數(shù)的關(guān)系、解析幾何的基本思想方法以及運(yùn)用綜合知識(shí)解決問(wèn)題的能力。

2.       在直角坐標(biāo)平面中,△ABC的兩個(gè)頂點(diǎn)為 A(0,-1),B(0, 1)平面內(nèi)兩點(diǎn)G、M同時(shí)滿足① ,  ②= =     

(1)求頂點(diǎn)C的軌跡E的方程

(2)設(shè)P、Q、R、N都在曲線E上 ,定點(diǎn)F的坐標(biāo)為(, 0) ,已知 ,  ∥?= 0.求四邊形PRQN面積S的最大值和最小值.

 

 解析:本例(1)要熟悉用向量的方式表達(dá)點(diǎn)特征;(2)要把握好直線與橢圓的位置關(guān)系,弦長(zhǎng)公式,靈活的運(yùn)算技巧是解決好本題的關(guān)鍵。

 答案:(1)設(shè)C ( x , y ), ,由①知,G為        

△ABC的重心 ,    G(,)   由②知M是△ABC的外心,M在x軸上

 由③知M(,0),

  得

化簡(jiǎn)整理得:(x≠0)。

 (2)F(,0 )恰為的右焦點(diǎn)

  設(shè)PQ的斜率為k≠0且k≠±,則直線PQ的方程為y = k ( x -)

設(shè)P(x1 , y1) ,Q (x2 ,y2 )  則x1 + x2 =  ,    x1?x2 =        

則| PQ | = ?

       =  ?

       =  

  RN⊥PQ,把k換成得 | RN | =   

  S =| PQ | ? | RN |

      =  =

                                

≥2 , ≥16

≤ S  < 2 , (當(dāng) k = ±1時(shí)取等號(hào))

又當(dāng)k不存在或k = 0時(shí)S = 2

綜上可得  ≤ S ≤ 2

 Smax = 2 , Smin =   

  點(diǎn)評(píng):本題考查了向量的有關(guān)知識(shí),橢圓與直線的基本關(guān)系,二次方程的根與系數(shù)的關(guān)系及不等式,轉(zhuǎn)化的基本思想方法以及運(yùn)用綜合知識(shí)解決問(wèn)題的能力。

考點(diǎn)二  圓錐曲線的幾何性質(zhì)

3.       如圖,F(xiàn)為雙曲線C:的右焦點(diǎn)  P為雙曲線C右支上一點(diǎn),且位于軸上方,M為左準(zhǔn)線上一點(diǎn),為坐標(biāo)原點(diǎn)  已知四邊形為平行四邊形, 

(Ⅰ)寫(xiě)出雙曲線C的離心率的關(guān)系式;

(Ⅱ)當(dāng)時(shí),經(jīng)過(guò)焦點(diǎn)F且平行于OP的直線交雙曲線于A、B點(diǎn),若,求此時(shí)的雙曲線方程 

分析:  圓錐曲線的幾何性質(zhì)結(jié)合其它圖形的考查是重點(diǎn)。注意靈活應(yīng)用第二定義。

解:∵四邊形,∴,作雙曲線的右準(zhǔn)線交PM于H,則,又, 

(Ⅱ)當(dāng)時(shí),,,,雙曲線為四邊形是菱形,所以直線OP的斜率為,則直線AB的方程為,代入到雙曲線方程得:

,由得:,解得,則,所以為所求

點(diǎn)評(píng):本題靈活的運(yùn)用到圓錐曲線的第二定義解題。

4.       設(shè)分別為橢圓的左、右頂點(diǎn),橢圓長(zhǎng)半軸的長(zhǎng)等于焦距,且為它的右準(zhǔn)線 

(Ⅰ)、求橢圓的方程;

(Ⅱ)、設(shè)為右準(zhǔn)線上不同于點(diǎn)(4,0)的任意一點(diǎn), 若直線分別與橢圓相交于異于的點(diǎn),證明:點(diǎn)在以為直徑的圓內(nèi) 

分析:本小題主要考查直線、圓和橢圓等平面解析幾何的基礎(chǔ)知識(shí),考查綜合運(yùn)用數(shù)學(xué)知識(shí)進(jìn)行推理運(yùn)算的能力和解決問(wèn)題的能力

解:(Ⅰ)依題意得 a=2c=4,解得a=2,c=1,從而b= 

故橢圓的方程為   

(Ⅱ)解法1:由(Ⅰ)得A(-2,0),B(2,0) 

設(shè)M(x0,y0 

∵M(jìn)點(diǎn)在橢圓上,∴y0(4-x02                 1

又點(diǎn)M異于頂點(diǎn)A、B,∴-2<x0<2,由P、A、M三點(diǎn)共線可以得

P(4, 

從而=(x0-2,y0),

=(2, 

?=2x0-4+(x02-4+3y02        2

將1代入2,化簡(jiǎn)得?(2-x0 

∵2-x0>0,∴?>0,則∠MBP為銳角,從而∠MBN為鈍角,

故點(diǎn)B在以MN為直徑的圓內(nèi) 

解法2:由(Ⅰ)得A(-2,0),B(2,0)  設(shè)M(x1,y1),N(x2,y2),

則-2<x1<2,-2<x2<2,又MN的中點(diǎn)Q的坐標(biāo)為(,),

依題意,計(jì)算點(diǎn)B到圓心Q的距離與半徑的差

=(-2)2+(2[(x1-x2)2+(y1-y2)2]

                 =(x1-2) (x2-2)+y1y1                     3

又直線AP的方程為y=,直線BP的方程為y=,

而點(diǎn)兩直線AP與BP的交點(diǎn)P在準(zhǔn)線x=4上,

,即y2                       4

又點(diǎn)M在橢圓上,則,即        5

于是將4、5代入3,化簡(jiǎn)后可得 

從而,點(diǎn)B在以MN為直徑的圓內(nèi) 

點(diǎn)評(píng):本題關(guān)鍵是聯(lián)系直線、圓和橢圓等平面解析幾何的基礎(chǔ)知識(shí),運(yùn)用數(shù)學(xué)知識(shí)進(jìn)行推理運(yùn)算的能力和解決問(wèn)題的能力

考點(diǎn)三  直線與圓錐曲線位置關(guān)系問(wèn)題

5.       已知拋物線C:上任意一點(diǎn)到焦點(diǎn)F的距離比到y(tǒng)軸的距離大1。

(1)求拋物線C的方程;

(2)若過(guò)焦點(diǎn)F的直線交拋物線于M、N兩點(diǎn),M在第一象限,且|MF|=2|NF|,求直線MN的方程;

(3)求出一個(gè)數(shù)學(xué)問(wèn)題的正確結(jié)論后,將其作為條件之一,提出與原來(lái)問(wèn)題有關(guān)的新問(wèn)題,我們把它稱(chēng)為原來(lái)問(wèn)題的一個(gè)“逆向”問(wèn)題.

    例如,原來(lái)問(wèn)題是“若正四棱錐底面邊長(zhǎng)為4,側(cè)棱長(zhǎng)為3,求該正四棱錐的體積”.求出體積后,它的一個(gè)“逆向”問(wèn)題可以是“若正四棱錐底面邊長(zhǎng)為4,體積為,求側(cè)棱長(zhǎng)”;也可以是“若正四棱錐的體積為,求所有側(cè)面面積之和的最小值”.

   現(xiàn)有正確命題:過(guò)點(diǎn)的直線交拋物線C:于P、Q兩點(diǎn),設(shè)點(diǎn)P關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為R,則直線RQ必過(guò)焦點(diǎn)F。

   試給出上述命題的“逆向”問(wèn)題,并解答你所給出的“逆向”問(wèn)題。

解析:

答案:解:(1)

(2)設(shè)(t>0),則,F(xiàn)(1,0)。

因?yàn)镸、F、N共線,則有,

所以,解得

所以,

因而,直線MN的方程是。

(3)“逆向問(wèn)題”一:

①已知拋物線C:的焦點(diǎn)為F,過(guò)點(diǎn)F的直線交拋物線C于P、Q兩點(diǎn),設(shè)點(diǎn)P關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為R,則直線RQ必過(guò)定點(diǎn)

證明:設(shè)過(guò)F的直線為y=k(x),,則

,所以, , =

所以直線RQ必過(guò)焦點(diǎn)A。

②過(guò)點(diǎn)的直線交拋物線C于P、Q兩點(diǎn),F(xiàn)P與拋物線交于另一點(diǎn)R,則RQ垂直于x軸。

③已知拋物線C:,過(guò)點(diǎn)B(m,0 )(m>0)的直線交拋物線C于P、Q兩點(diǎn),設(shè)點(diǎn)P關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為R,則直線RQ必過(guò)定點(diǎn)A(-m,0)。

 “逆向問(wèn)題”二:已知橢圓C:的焦點(diǎn)為F1(-c,0),F(xiàn)2(c,0),過(guò)F2的直線交橢圓C于P、Q兩點(diǎn),設(shè)點(diǎn)P關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為R,則直線RQ必過(guò)定點(diǎn)

 “逆向問(wèn)題”三:已知雙曲線C:的焦點(diǎn)為F1(-c,0),F(xiàn)2(c,0),過(guò)F2的直線交雙曲線C于P、Q兩點(diǎn),設(shè)點(diǎn)P關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為R,則直線RQ必過(guò)定點(diǎn)。

考點(diǎn)四  圓錐曲線的應(yīng)用

(1).圓錐曲線的標(biāo)準(zhǔn)方程和幾何性質(zhì)與平面向量的巧妙結(jié)合。

6.       (2004年全國(guó)高考天津理科22題)橢圓的中心是原點(diǎn)O,它的短軸長(zhǎng)為,相應(yīng)于焦點(diǎn)F(C,0)(C>0)的準(zhǔn)線L與X軸相交于點(diǎn)A,,過(guò)點(diǎn)A的直線與橢圓相交于P、Q兩點(diǎn)。

(1)求橢圓的方程及離心率;

(2)若 OP?O Q = 0,求直線PQ的方程;

(3)設(shè) A P =  AQ(>1),過(guò)點(diǎn)P且平行與準(zhǔn)線L的直線與橢圓相交于另一點(diǎn)M,證明  FM = - FQ 。

分析:(1)要求橢圓的方程及離心率,很重要的一點(diǎn)就是要熟悉這種二次曲線的標(biāo)準(zhǔn)方程的中心、長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)、焦點(diǎn)坐標(biāo)、標(biāo)準(zhǔn)方程、離心率、焦距等有關(guān)概念及幾何性質(zhì)。解:(1)根據(jù)已知條件“橢圓的中心是原點(diǎn)O,它的短軸長(zhǎng)為,相應(yīng)于焦點(diǎn)F(C,0)(C>0)的準(zhǔn)線L與X軸相交于點(diǎn)A! 可設(shè)橢圓的方程為 (a>),從而有;又因可以有,聯(lián)系以上這兩個(gè)關(guān)于a、c的方程組并解得a=,c=2,所以橢圓的方程為,離心率e=

(2)根據(jù)已知條件 “O P?O Q = 0 ,我們可設(shè) P ,Q,把兩個(gè)向量的數(shù)量積的形式轉(zhuǎn)化為坐標(biāo)表示的形式,再根據(jù)直線 PQ 經(jīng)過(guò) A(3,0),只須求出直線PQ的斜率K即可求出直線PQ的方程。而P、Q兩點(diǎn)又在橢圓上,因此,我們?nèi)菀紫氲酵ㄟ^(guò)直線y=k(x-3)與橢圓,聯(lián)系方程組消去一個(gè)未知數(shù)y(或x)得,并利用一元二次方程的根與系數(shù)關(guān)系結(jié)合不難求出k=,這里應(yīng)特別注意K的值要保證>0成立,否則無(wú)法保證直線PQ與橢圓有兩個(gè)交點(diǎn)。

(3)要證F M =- F Q ,我們?nèi)菀紫氲酵ㄟ^(guò)式中兩個(gè)向量FM、FQ的坐標(biāo)之間關(guān)系來(lái)謀求證題的方法。為此我們可根據(jù)題意“過(guò)點(diǎn)P且平行為準(zhǔn)線L的直線與橢圓相交于另一點(diǎn)M”,求得點(diǎn)M坐標(biāo)為。又因AP=AQ,易知FM、FQ的兩個(gè)縱坐標(biāo)已經(jīng)滿足,所以現(xiàn)在要考慮的問(wèn)題是如何證明FM、FQ的兩個(gè)橫坐標(biāo)應(yīng)該滿足,事實(shí)上,

注意到>1,解得    ⑤

因F(2,0),M,故FM==。

  ==

又FQ=,因此FM=-FQ。

點(diǎn)評(píng):本題主要考查橢圓的標(biāo)準(zhǔn)方程、幾何性質(zhì)及相關(guān)概念,直線方程、平面向量的坐標(biāo)表示和向量的數(shù)量積,多元二次方程組解法、曲線和方程的關(guān)系、直線與橢圓相交等解析幾何的基礎(chǔ)思想方法,以及分析問(wèn)題和綜合解題能力。

把兩個(gè)向量之間的關(guān)系,轉(zhuǎn)化為兩個(gè)向量坐標(biāo)之間的關(guān)系,再通過(guò)代數(shù)運(yùn)算的方法來(lái)解決有關(guān)向量的問(wèn)題是一種常用的解題手段。

7.       (江蘇卷)已知,記點(diǎn)P的軌跡為E.

   (1)求軌跡E的方程;

   (2)若直線l過(guò)點(diǎn)F2且與軌跡E交于P、Q兩點(diǎn).

       (i)無(wú)論直線l繞點(diǎn)F2怎樣轉(zhuǎn)動(dòng),在x軸上總存在定點(diǎn),使恒成立,求實(shí)數(shù)m的值.

       (ii)過(guò)PQ作直線的垂線PA、OB,垂足分別為A、B,記,求λ的取值范圍.

 

解析:

答案:解:(1)由知,點(diǎn)P的軌跡E是以F1、F2為焦點(diǎn)的雙曲線右支,由,故軌跡E的方程為

   (2)當(dāng)直線l的斜率存在時(shí),設(shè)直線方程為,與雙曲線方程聯(lián)立消y得,

   

    解得k2 >3

   (i)

    ,

    故得對(duì)任意的

    恒成立,

   

    ∴當(dāng)m =-1時(shí),MPMQ.

    當(dāng)直線l的斜率不存在時(shí),由知結(jié)論也成立,

    綜上,當(dāng)m =-1時(shí),MPMQ.

   (ii)是雙曲線的右準(zhǔn)線,

    由雙曲線定義得:,

    方法一:

                          

    ,

    注意到直線的斜率不存在時(shí),

    綜上,

    方法二:設(shè)直線PQ的傾斜角為θ,由于直線PQ與雙曲線右支有二個(gè)交點(diǎn),

    ,過(guò)Q作QC⊥PA,垂足為C,則

      <strong id="4awzc"><center id="4awzc"></center></strong>

          由

          故:

       

       

       

       

       

      (2)。圓錐曲線的標(biāo)準(zhǔn)方程和幾何性質(zhì)與導(dǎo)數(shù)的有機(jī)聯(lián)系。

      10.(2004年全國(guó)高考福建理科22題)如圖,P是拋物線C:上一點(diǎn),直線L過(guò)點(diǎn)P且與拋物線C交于另一點(diǎn)Q。

      (Ⅰ)若直線L與過(guò)點(diǎn)P的切線垂直,求線段PQ中點(diǎn)M的軌跡方程;

      (Ⅱ)若直線L不過(guò)原點(diǎn)且與X軸交于S,與Y軸交于點(diǎn)T,試求

      分析:(1)要求線段PQ的中點(diǎn)M的軌跡方程,我們常把M的坐標(biāo)轉(zhuǎn)化為線段PQ的兩個(gè)端點(diǎn)坐標(biāo)之間的關(guān)系。而P、Q兩點(diǎn)又是直線L與拋物線的交點(diǎn),容易想到直線L的方程與拋物線C的方程相聯(lián)立消去y(或x),轉(zhuǎn)化為一元二次方程根與系數(shù)的關(guān)系問(wèn)題。另外,求過(guò)拋物線P的切線的斜率問(wèn)題,我們自然會(huì)想到求出數(shù)的導(dǎo)數(shù)。

      解:(1)事實(shí)上,這樣過(guò)P的斜率為,由于直線L與過(guò)點(diǎn)P的切線垂直,因此直線L的斜率為≠0),所以可設(shè)直線L的方程為,結(jié)合,消去y并化簡(jiǎn)得

      若設(shè)Q,M,因M為PQ的中點(diǎn),故有

      消去得M的軌跡方程為。

      即M的軌跡方程為。

      (2)根據(jù)式子的特點(diǎn),我們很自然想到平面直角坐標(biāo)系中的兩點(diǎn)間的距離公式。于是可先求S、T兩點(diǎn)的坐標(biāo),易知:

      ,從而有

      =

      又因

      ?≥2

      、可取一切不相等的正數(shù)。

      的取值范圍是(2,)。

      點(diǎn)評(píng):這里的解法有別于2004年福建省高考數(shù)學(xué)評(píng)標(biāo)準(zhǔn)所給的答案。我們看到,其解法的優(yōu)點(diǎn)在于不用添加任何輔助線的方法就可直接給出作答,這更貼近考生的學(xué)習(xí)實(shí)際。

       

       

      試題詳情


      同步練習(xí)冊(cè)答案