科目: 來源: 題型:
【題目】對于函數(shù),若存在實(shí)數(shù)m,使得為R上的奇函數(shù),則稱是位差值為m的“位差奇函數(shù)”.
(1)判斷函數(shù)和是否是位差奇函數(shù),并說明理由;
(2)若是位差值為的位差奇函數(shù),求的值;
(3)若對于任意,都不是位差值為m的位差奇函數(shù),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓,直線l不經(jīng)過坐標(biāo)原點(diǎn)O且不平行與坐標(biāo)軸,l與相交于A,B兩點(diǎn),線段的中點(diǎn)為M.
(1)證明:直線的斜率與直線l的斜率的乘積為定值;
(2)若直線l過點(diǎn),延長線與交于點(diǎn)P,若四邊形是平行四邊形,求直線l的斜率;
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列,記集合.
(1)對于數(shù)列,寫出集合;
(2)若,是否存在,使得?若存在,求出一組符合條件的;若不存在,說明理由.
(3)若,把集合中的元素從小到大排列,得到的新數(shù)列為,若,求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若在時(shí),有極值,求的值;
(2)在直線上是否存在點(diǎn),使得過點(diǎn)至少有兩條直線與曲線相切?若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱柱中,平面,,.
(1)求證:平面;
(2)求異面直線與所成角的大;
(3)點(diǎn)在線段上,且,點(diǎn)在線段上,若平面,求的值(用含的代數(shù)式表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年6月,國內(nèi)的運(yùn)營牌照開始發(fā)放.從到,我們國家的移動通信業(yè)務(wù)用了不到20年的時(shí)間,完成了技術(shù)上的飛躍,躋身世界先進(jìn)水平.為了解高校學(xué)生對的消費(fèi)意愿,2019年8月,從某地在校大學(xué)生中隨機(jī)抽取了1000人進(jìn)行調(diào)查,樣本中各類用戶分布情況如下:
用戶分類 | 預(yù)計(jì)升級到的時(shí)段 | 人數(shù) |
早期體驗(yàn)用戶 | 2019年8月至2019年12月 | 270人 |
中期跟隨用戶 | 2020年1月至2021年12月 | 530人 |
后期用戶 | 2022年1月及以后 | 200人 |
我們將大學(xué)生升級時(shí)間的早晚與大學(xué)生愿意為套餐支付更多的費(fèi)用作比較,可得出下圖的關(guān)系(例如早期體驗(yàn)用戶中愿意為套餐多支付5元的人數(shù)占所有早期體驗(yàn)用戶的).
(1)從該地高校大學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生愿意在2021年或2021年之前升級到的概率;
(2)從樣本的早期體驗(yàn)用戶和中期跟隨用戶中各隨機(jī)抽取1人,以表示這2人中愿意為升級多支付10元或10元以上的人數(shù),求的分布列和數(shù)學(xué)期望;
查看答案和解析>>
科目: 來源: 題型:
【題目】將初始溫度為的物體放在室溫恒定為的實(shí)驗(yàn)室里,現(xiàn)等時(shí)間間隔測量物體溫度,將第次測量得到的物體溫度記為,已知.已知物體溫度的變化與實(shí)驗(yàn)室和物體溫度差成正比(比例系數(shù)為).給出以下幾個(gè)模型,那么能夠描述這些測量數(shù)據(jù)的一個(gè)合理模型為__________:(填寫模型對應(yīng)的序號)
①;②;③.
在上述模型下,設(shè)物體溫度從升到所需時(shí)間為,從上升到所需時(shí)間為,從上升到所需時(shí)間為,那么與的大小關(guān)系是________(用“”,“”或“”號填空)
查看答案和解析>>
科目: 來源: 題型:
【題目】用平面截圓柱面,當(dāng)圓柱的軸與所成角為銳角時(shí),圓柱面的截面是一個(gè)橢圓,著名數(shù)學(xué)家創(chuàng)立的雙球?qū)嶒?yàn)證明了上述結(jié)論.如圖所示,將兩個(gè)大小相同的球嵌入圓柱內(nèi),使它們分別位于的上方和下方,并且與圓柱面和均相切.給出下列三個(gè)結(jié)論:
①兩個(gè)球與的切點(diǎn)是所得橢圓的兩個(gè)焦點(diǎn);
②若球心距,球的半徑為,則所得橢圓的焦距為2;
③當(dāng)圓柱的軸與所成的角由小變大時(shí),所得橢圓的離心率也由小變大.
其中,所有正確結(jié)論的序號是( )
A.①B.②③C.①②D.①②③
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù),).在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線上恰有一個(gè)點(diǎn)到曲線的距離為1,求曲線的直角坐標(biāo)方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com