【題目】如圖,四棱錐中,平面,,,,為的中點(diǎn),與相交于點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求直線與平面所成角的正弦值.
【答案】(Ⅰ)詳見解析;(Ⅱ).
【解析】
(Ⅰ)先證明面得到,再證明得到平面.
(Ⅱ)以為原點(diǎn),分別以為軸,軸,軸的建立直角坐標(biāo)系.計(jì)算平面的法向量為,再利用向量夾角公式得到答案.
解:(Ⅰ)
由已知平面,可得,,
由題意得,為直角梯形,如圖所示,
,所以為平行四邊形,
所以,所以.
又因?yàn)?/span>,且,
所以面,
故.
在直角梯形中,,
因?yàn)?/span>面,所以,
所以為等腰直角三角形,為斜邊上的中點(diǎn),
所以.且,
所以平面
(Ⅱ)法一:以為原點(diǎn),分別以為軸,軸,軸的建立直角坐標(biāo)系.
不妨設(shè)
,,,,
設(shè)是平面的法向量.
滿足 ,
所以 ,
則令 ,解得
法二:(等體積法求到平面的距離)
設(shè),計(jì)算可得
, , ,
,
解得
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,,斜率為的直線與拋物線交于兩點(diǎn).
(1)求的最小值;
(2)若,直線的斜率都存在,且;探究:直線是否過定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系 中,曲線 的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線 的極坐標(biāo)方程為 .
(1)求直線和曲線的普通方程;
(2)已知點(diǎn),且直線和曲線交于兩點(diǎn),求 的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,動(dòng)點(diǎn)P到定點(diǎn)F(1,0)的距離比到定直線x=-2的距離小1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)若直線l與(1)中軌跡C交于A,B兩點(diǎn),通過A和原點(diǎn)O的直線交直線x=-1于D,求證:直線DB平行于x軸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若直線為曲線的切線,求證:直線與曲線不可能有2個(gè)切點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)為邊長為1的正方形內(nèi)部及其邊界的點(diǎn)構(gòu)成的集合.從中的任意點(diǎn)P作x軸、y軸的垂線,垂足分別為,.所有點(diǎn)構(gòu)成的集合為M,M中所有點(diǎn)的橫坐標(biāo)的最大值與最小值之差記為;所有點(diǎn)構(gòu)成的集合為N,N中所有點(diǎn)的縱坐標(biāo)的最大值與最小值之差記為.給出以下命題:
①的最大值為:②的取值范圍是;③恒等于0.
其中所有正確結(jié)論的序號是()
A.①②B.②③C.①③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)構(gòu)為調(diào)查我國公民對申辦奧運(yùn)會(huì)的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計(jì)如下:
支持 | 不支持 | 合計(jì) | |
年齡不大于50歲 | 80 | ||
年齡大于50歲 | 10 | ||
合計(jì) | 70 | 100 |
(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)能否在犯錯(cuò)誤的概率不超過5%的前提下認(rèn)為不同年齡與支持申辦奧運(yùn)無關(guān)?
(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機(jī)抽取3人,求至多有1位女教師的概率.
附:,
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com