【題目】如圖,在三棱柱中,平面,.

1)求證:平面

2)求異面直線所成角的大;

3)點(diǎn)在線段上,且,點(diǎn)在線段上,若平面,求的值(用含的代數(shù)式表示).

【答案】(1)證明見(jiàn)解析(2)(3)

【解析】

1)根據(jù)三棱柱的結(jié)構(gòu)特征,利用線面垂直的判定定理,證得平面,得到,再利用線面垂直的判定定理,即可證得平面;

2)由(1)得到,建立空間直角坐標(biāo)系,求得向量,利用向量的夾角公式,即可求解.

3)由,得,設(shè),得,求得向量的坐標(biāo),結(jié)合平面,利用,即可求解.

1)在三棱柱中,由平面,所以平面

又因?yàn)?/span>平面,所以平面平面,交線為.

又因?yàn)?/span>,所以,所以平面.

因?yàn)?/span>平面,所以

又因?yàn)?/span>,所以,

,所以平面.

2)由(1)知底面,,如圖建立空間直角坐標(biāo)系,

由題意得,,,.

所以,.

所以.

故異面直線所成角的大小為.

3)易知平面的一個(gè)法向量

,得.

設(shè),得,則

因?yàn)?/span>平面,所以,

,解得,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

1)討論函數(shù)的單調(diào)性;

2)若,記函數(shù)的兩個(gè)極值點(diǎn)為,(其中),當(dāng)的最大值為時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù),且,則方程在區(qū)間上的所有實(shí)數(shù)根之和最接近下列哪個(gè)數(shù)( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某環(huán)境保護(hù)部門(mén)對(duì)某處的環(huán)境狀況用“污染指數(shù)”來(lái)監(jiān)測(cè),據(jù)測(cè)定,該處的“污染指數(shù)”與附近污染源的強(qiáng)度和距離之比成正比,比例系數(shù)為常數(shù),現(xiàn)已知相距兩家化工廠(污染源)的污染強(qiáng)度分別為1,它們連線段上任意一點(diǎn)處的污染指數(shù)等于兩化工廠對(duì)該處的污染指數(shù)之和,設(shè)

1)試將表示為的函數(shù),指出其定義域;

2)當(dāng)時(shí),處的“污染指數(shù)”最小,試求化工廠的污染強(qiáng)度的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,平面,,,的中點(diǎn),相交于點(diǎn).

(Ⅰ)求證:平面

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿(mǎn)足,我們知道當(dāng)a取不同的值時(shí),得到不同的數(shù)列.如當(dāng)時(shí),得到無(wú)窮數(shù)列:0,,,當(dāng)時(shí),得到有窮數(shù)列:,1.

1)當(dāng)a為何值時(shí),;

2)設(shè)數(shù)列滿(mǎn)足,求證:a中的任一數(shù),都可以得到一個(gè)有窮數(shù)列;

3)是否存在實(shí)數(shù)a,使得到的是無(wú)窮數(shù)列,且對(duì)于任意,都有成立,若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】每個(gè)國(guó)家身高正常的標(biāo)準(zhǔn)是不一樣的,不同年齡、不同種族、不同地區(qū)身高都是有差異的,我們國(guó)家會(huì)定期進(jìn)行018歲孩子身高體重全國(guó)性調(diào)查,然后根據(jù)這個(gè)調(diào)查結(jié)果制定出相應(yīng)的各個(gè)年齡段的身高標(biāo)準(zhǔn).一般測(cè)量出一個(gè)孩子的身高,對(duì)照一下身高體重表,如果在平均值標(biāo)準(zhǔn)差以?xún)?nèi)的就說(shuō)明你的孩子身高是正常的,否則說(shuō)明你的孩子可能身高偏矮或偏高了.根據(jù)科學(xué)研究018歲的孩子的身高服從正態(tài)分布.在某城市隨機(jī)抽取10018歲男大學(xué)生得到其身高()的數(shù)據(jù).

1)記表示隨機(jī)抽取的10018歲男大學(xué)生身高的數(shù)據(jù)在之內(nèi)的人數(shù),求的數(shù)學(xué)期望.

2)若18歲男大學(xué)生身高的數(shù)據(jù)在之內(nèi),則說(shuō)明孩子的身高是正常的.

i)請(qǐng)用統(tǒng)計(jì)學(xué)的知識(shí)分析該市18歲男大學(xué)生身高的情況;

ii)下面是抽取的10018歲男大學(xué)生中20名大學(xué)生身高()的數(shù)據(jù):

1.65

1.62

1.74

1.82

1.68

1.72

1.75

1.66

1.73

1.67

1.86

1.81

1.74

1.69

1.76

1.77

1.69

1.78

1.63

1.68

經(jīng)計(jì)算得,,其中為抽取的第個(gè)學(xué)生的身高,.用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì),剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)的值.(精確到0.01

附:若隨機(jī)變量服從正態(tài)分布,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年國(guó)慶黃金周影市火爆依舊,《我和我的祖國(guó)》、《中國(guó)機(jī)長(zhǎng)》、《攀登者》票房不斷刷新,為了解我校高三2300名學(xué)生的觀影情況,隨機(jī)調(diào)查了100名在校學(xué)生,其中看過(guò)《我和我的祖國(guó)》或《中國(guó)機(jī)長(zhǎng)》的學(xué)生共有80位,看過(guò)《中國(guó)機(jī)長(zhǎng)》的學(xué)生共有60位,看過(guò)《中國(guó)機(jī)長(zhǎng)》且看過(guò)《我和我的祖國(guó)》的學(xué)生共有50位,則該校高三年級(jí)看過(guò)《我和我的祖國(guó)》的學(xué)生人數(shù)的估計(jì)值為( )

A.1150B.1380C.1610D.1860

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P-ABC中,已知,頂點(diǎn)P在平面ABC上的射影為的外接圓圓心.

1)證明:平面平面ABC

2)若點(diǎn)M在棱PA上,,且二面角P-BC-M的余弦值為,試求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案