相關(guān)習(xí)題
 0  262619  262627  262633  262637  262643  262645  262649  262655  262657  262663  262669  262673  262675  262679  262685  262687  262693  262697  262699  262703  262705  262709  262711  262713  262714  262715  262717  262718  262719  262721  262723  262727  262729  262733  262735  262739  262745  262747  262753  262757  262759  262763  262769  262775  262777  262783  262787  262789  262795  262799  262805  262813  266669 

科目: 來源: 題型:

【題目】已知橢圓上一點與兩焦點構(gòu)成的三角形的周長為,離心率為 .

(1)求橢圓的方程;

(2)設(shè)橢圓C的右頂點和上頂點分別為A、B,斜率為的直線l與橢圓C交于P、Q兩點(點P在第一象限).若四邊形APBQ面積為,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】定義在上的函數(shù),若滿足:對任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界

1)設(shè),判斷上是否是有界函數(shù),若是,說明理由,并寫出所有上界的值的集合;若不是,也請說明理由.

2)若函數(shù)上是以為上界的有界函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐E-ABCD中,平面ABCD,,,

1)求證:平面BDE

2)當(dāng)幾何體ABCE的體積等于時,求四棱錐E-ABCD的側(cè)面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】某大型企業(yè)為鼓勵員工利用網(wǎng)絡(luò)進行營銷,準(zhǔn)備為員工辦理手機流量套餐.為了解員工手機流量使用情況,通過抽樣,得到100位員工每人手機月平均使用流量L(單位:M)的數(shù)據(jù),其頻率分布直方圖如圖.

1)從該企業(yè)的100位員工中隨機抽取1人,求手機月平均使用流量不超過900M的概率;

(2)據(jù)了解,某網(wǎng)絡(luò)運營商推出兩款流量套餐,詳情如下:

套餐名稱

月套餐費(單位:元)

月套餐流量(單位:M

A

20

700

B

30

1000

流量套餐的規(guī)則是:每月1日收取套餐費.如果手機實際使用流量超出套餐流量,則需要購買流量疊加包,每一個疊加包(包含200M的流量)需要10元,可以多次購買,如果當(dāng)月流量有剩余,將會被清零.該企業(yè)準(zhǔn)備訂購其中一款流量套餐,每月為員工支付套餐費,以及購買流量疊加包所需月費用.若以平均費用為決策依據(jù),該企業(yè)訂購哪一款套餐更經(jīng)濟?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知正項數(shù)列與正項數(shù)列的前項和分別為,且對任意恒成立.

1)若,求數(shù)列的通項公式;

2)在(1)的條件下,若,求;

3)若對任意,恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知常數(shù),數(shù)列的前n項和為,,.

1)求數(shù)列的通項公式;

2)若,且數(shù)列是單調(diào)遞增數(shù)列,求實數(shù)a的取值范圍;

3)若,,對于任意給定的正整數(shù)k,是否都存在正整數(shù)p、q,使得?若存在,試求出p、q的一組值(不論有多少組,只要求出一組即可);若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,某鎮(zhèn)有一塊空地,其中,.當(dāng)?shù)劓?zhèn)政府規(guī)劃將這塊空地改造成一個旅游景點,擬在中間挖一個人工湖,其中M,N都在邊上,且,挖出的泥土堆放在地帶上形成假山,剩下的地帶開設(shè)兒童游樂場.為安全起見,需在的周圍安裝防護網(wǎng).

1)當(dāng)時,求防護網(wǎng)的總長度;

2)為節(jié)省資金投入,人工湖的面積要盡可能小,設(shè),問:當(dāng)多大時的面積最小?最小面積是多少?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是正方形,ACBD交于點O,PC⊥底面ABCD, 點E為側(cè)棱PB的中點.

求證:(1) PD∥平面ACE;

(2) 平面PAC⊥平面PBD

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線為參數(shù),實數(shù)),曲線為參數(shù),實數(shù)).在以為極點,軸的正半軸為極軸的極坐標(biāo)系中,射線交于,兩點,與交于,兩點.當(dāng)時,;當(dāng),.

(1)求的值.

(2)求的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在正方體中,E、FG、H分別是棱、、、的中點.

1)判斷直線的位置關(guān)系,并說明理由;

2)求異面直線所成的角的大小.

查看答案和解析>>

同步練習(xí)冊答案