【題目】已知橢圓:上一點與兩焦點構(gòu)成的三角形的周長為,離心率為 .
(1)求橢圓的方程;
(2)設(shè)橢圓C的右頂點和上頂點分別為A、B,斜率為的直線l與橢圓C交于P、Q兩點(點P在第一象限).若四邊形APBQ面積為,求直線l的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點.
(1)求證:;
(2)若平面PAC,則側(cè)棱SC上是否存在一點E,使得BE∥平面PAC?若存在,求SE:EC;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校研究性學(xué)習(xí)小組發(fā)現(xiàn),學(xué)生上課的注意力指標(biāo)隨著聽課時間的變化而變化.老師講課開始時學(xué)生的興趣激增,接下來學(xué)生的興趣將保持較理想的狀態(tài)一段時間,隨后學(xué)生的注意力開始分散.該小組發(fā)現(xiàn)注意力指標(biāo)與上課時刻第分鐘末的關(guān)系如下(,設(shè)上課開始時,t=0):.若上課后第5分鐘末時的注意力指標(biāo)為140.
(1)求的值;
(2)上課后第5分鐘末和第35分鐘末比較,哪個時刻注意力更集中?
(3)在一節(jié)課中,學(xué)生的注意力指標(biāo)至少達(dá)到140的時間能保持多長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項的和為,且,.
(1)證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項的和;
(3)設(shè)函數(shù)(為常數(shù)),且(2)中的>對任意的和都成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知常數(shù),數(shù)列的前n項和為,,.
(1)求數(shù)列的通項公式;
(2)若,且數(shù)列是單調(diào)遞增數(shù)列,求實數(shù)a的取值范圍;
(3)若,,對于任意給定的正整數(shù)k,是否都存在正整數(shù)p、q,使得?若存在,試求出p、q的一組值(不論有多少組,只要求出一組即可);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點為圓的圓心, 是圓上的動點,點在圓的半徑上,且有點和上的點,滿足, .
(1)當(dāng)點在圓上運(yùn)動時,求點的軌跡方程;
(2)若斜率為的直線與圓相切,直線與(1)中所求點的軌跡交于不同的兩點, , 是坐標(biāo)原點,且時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A,B是圓O:與x軸的兩個交點(點B在點A右側(cè)),點,x軸上方的動點P使直線,,的斜率存在且依次成等差數(shù)列.
(1)求證:動點P的橫坐標(biāo)為定值;
(2)設(shè)直線,與圓O的另一個交點分別為S,T.求證:點Q,S,T三點共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓長軸的兩個端點分別為,, 離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)作一條垂直于軸的直線,使之與橢圓在第一象限相交于點,在第四象限相交于點,若直線與直線相交于點,且直線的斜率大于,求直線的斜率的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com