【題目】如圖,在正方體中,E、F、G、H分別是棱、、、的中點(diǎn).
(1)判斷直線與的位置關(guān)系,并說(shuō)明理由;
(2)求異面直線與所成的角的大小.
【答案】(1)直線與相交;詳見解析(2)
【解析】
(1) 延長(zhǎng)與必交于C右側(cè)一點(diǎn)P,延長(zhǎng)與必交于C右側(cè)一點(diǎn)Q,證明P與Q重合,從而得到答案.
(2)由,可得,則與所成的角即為與所成的角,然后在三角形中求解.
解:(1)取的中點(diǎn)
∵E、F、I分別是正方形中、、的中點(diǎn)
∴
∴在平面中,延長(zhǎng)與必交于C右側(cè)一點(diǎn)P,且
同理,在平面中,延長(zhǎng)與必交于C右側(cè)一點(diǎn)Q,且
∴P與Q重合
進(jìn)而,直線與相交
方法二:∵在正方體中,E、H分別是、的中點(diǎn)
∴
∴是平行四邊形
∴
又∵F、G分別是、的中點(diǎn)
∴
∴,
∴、是梯形的兩腰
∴直線與相交
(2)解:∵在正方體中,
∴是平行四邊形
∴
又∵E、F分別是、的中點(diǎn)
∴
∴
∴與所成的角即為與所成的角
(或:與所成的角即為及其補(bǔ)角中的較小角)①
又∵在正方體中,為等邊三角形
∴②
∴由①②得直線與所成的角為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著互聯(lián)網(wǎng)經(jīng)濟(jì)逐步被人們接受,網(wǎng)上購(gòu)物的人群越來(lái)越多,網(wǎng)銀交易額也逐年增加,某地連續(xù)五年的網(wǎng)銀交易額統(tǒng)計(jì)表,如表所示:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
網(wǎng)銀交易額(億元) | 5 | 6 | 7 | 8 | 10 |
經(jīng)研究發(fā)現(xiàn),年份與網(wǎng)銀交易額之間呈線性相關(guān)關(guān)系,為了計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,,,得到如表:
時(shí)間代號(hào) | 1 | 2 | 3 | 4 | 5 |
0 | 1 | 2 | 3 | 5 |
(1)求關(guān)于的線性回歸方程;
(2)通過(guò)(1)中的方程,求出關(guān)于的回歸方程;
(3)用所求回歸方程預(yù)測(cè)2020年該地網(wǎng)銀交易額.
(附:在線性回歸方程中,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中錯(cuò)誤的為
A.已知,,且與的夾角為銳角,則實(shí)數(shù)的取值范圍是
B.向量,不能作為平面內(nèi)所有向量的一組基底
C.若,則在方向上的正射影的數(shù)量為
D.三個(gè)不共線的向量,,,滿足,則是的內(nèi)心
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社會(huì)研究機(jī)構(gòu),為了研究大學(xué)生的閱讀習(xí)慣,隨機(jī)調(diào)查某大學(xué)40名不同性別的大學(xué)生在購(gòu)買食物時(shí)是否讀營(yíng)養(yǎng)說(shuō)明,其中男女各一半,男生中有表示會(huì)讀,女生中有表示不會(huì)讀.
(1)根據(jù)調(diào)查結(jié)果,得到如下2╳2列聯(lián)表:
男 | 女 | 總計(jì) | |
讀營(yíng)養(yǎng)說(shuō)明 | |||
不讀營(yíng)養(yǎng)說(shuō)明 | |||
總計(jì) |
(2)根據(jù)以上列聯(lián)表,進(jìn)行獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為性別與是否讀營(yíng)養(yǎng)說(shuō)明之間有關(guān)系?
P(K2≥k) | 0.10 | 0.025 | 0.010 | 0.005 |
k | 2.706 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知高為3的正三棱柱的每個(gè)頂點(diǎn)都在球的表面上,若球的表面積為,則異面直線與所成角的余弦值為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,四邊形為梯形, ,且, 是邊長(zhǎng)為2的正三角形,頂點(diǎn)在上的射影為點(diǎn),且, , .
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】年微信用戶數(shù)量統(tǒng)計(jì)顯示,微信注冊(cè)用戶數(shù)量已經(jīng)突破億.微信用戶平均年齡只有歲, 的用戶在歲以下, 的用戶在歲之間,為調(diào)查大學(xué)生這個(gè)微信用戶群體中每人擁有微信的數(shù)量,現(xiàn)在從北京大學(xué)生中隨機(jī)抽取位同學(xué)進(jìn)行了抽樣調(diào)查,結(jié)果如下:
微信群數(shù)量 | 頻數(shù) | 頻率 |
至個(gè) | ||
至個(gè) | ||
至個(gè) | ||
至個(gè) | ||
個(gè)以上 | ||
合計(jì) |
()求, , 的值.
()若從位同學(xué)中隨機(jī)抽取人,求這人中恰有人微信群個(gè)數(shù)超過(guò)個(gè)的概率.
()以這個(gè)人的樣本數(shù)據(jù)估計(jì)北京市的總體數(shù)據(jù)且以頻率估計(jì)概率,若從全市大學(xué)生中隨機(jī)抽取人,記表示抽到的是微信群個(gè)數(shù)超過(guò)個(gè)的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓與直線y=x-2相切,設(shè)橢圓的上頂點(diǎn)為M, 是橢圓的左右焦點(diǎn),且⊿M為等腰直角三角形。(1)求橢圓的標(biāo)準(zhǔn)方程;(2)直線l過(guò)點(diǎn)N(0,-)交橢圓于A,B兩點(diǎn),直線MA、MB分別與橢圓的短軸為直徑的圓交于S,T兩點(diǎn),求證:O、S、T三點(diǎn)共線。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com