【題目】如圖,在四棱錐E-ABCD中,平面ABCD,,,.
(1)求證:平面BDE;
(2)當(dāng)幾何體ABCE的體積等于時,求四棱錐E-ABCD的側(cè)面積.
【答案】(1)證明見解析;(2)
【解析】
(1)取的中點(diǎn),連接,證得,結(jié)合平面,證得,由此證得平面.
(2)首先根據(jù)三棱錐的體積公式結(jié)合等體積法,利用幾何體的體積為列方程,解方程求得的長,進(jìn)而計(jì)算的的長,證得三角形為直角三角形,由此計(jì)算出四棱錐的側(cè)面積.
(1)證明:取的中點(diǎn),連接,,四邊形為矩形,
則直角梯形中,,,
,即,
又平面,平面,
,
又
平面,
(2)由于平面,平面,所以平面平面,而,所以平面,所以,
,
解得,
又,,,又,;而,所以,故三角形為直角三角形.
所以四棱錐E-ABCD的側(cè)面積為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(2,0),B(0,2),,O為坐標(biāo)原點(diǎn).
(1),求sin 2θ的值;
(2)若,且θ∈(-π,0),求與的夾角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年的流感來得要比往年更猛烈一些據(jù)四川電視臺“新聞現(xiàn)場”播報(bào),近日四川省人民醫(yī)院一天的最高接診量超過了一萬四千人,成都市婦女兒童中心醫(yī)院接診量每天都在九千人次以上這些浩浩蕩蕩的看病大軍中,有不少人都是因?yàn)楦忻皝淼尼t(yī)院某課外興趣小組趁著寒假假期空閑,欲研究晝夜溫差大小與患感冒人數(shù)之間的關(guān)系,他們分別到成都市氣象局與跳傘塔社區(qū)醫(yī)院抄錄了去年1到6月每月20日的晝夜溫差情況與患感冒就診的人數(shù),得到如下資料:
日期 | 1月20日 | 2月20日 | 3月20日 | 4月20日 | 5月20日 | 6月20日 |
晝夜溫差 | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)人 | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2月至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考公式: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,AC與BD交于點(diǎn)O,PC⊥底面ABCD, 點(diǎn)E為側(cè)棱PB的中點(diǎn).
求證:(1) PD∥平面ACE;
(2) 平面PAC⊥平面PBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個命題:①過點(diǎn)的直線方程一定可以表示為的形式;②過點(diǎn)且在x,y軸截距相等的直線方程是;③過點(diǎn)且與直線垂直的直線方程是;④設(shè)點(diǎn)不在直線上,則過點(diǎn)M且與直線l平行的直線方程是;⑤點(diǎn)到直線的距離不小于2.以上命題中,正確的序號是( )
A.②③⑤B.④⑤C.①④⑤D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的極大值;
(2)當(dāng)時,不等式恒成立,求的最小值;
(3)是否存在實(shí)數(shù),使得方程在上有唯一的根,若存在,求出所有的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足, ,(N*).
(Ⅰ)寫出的值;
(Ⅱ)設(shè),求的通項(xiàng)公式;
(Ⅲ)記數(shù)列的前項(xiàng)和為,求數(shù)列的前項(xiàng)和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 如圖所示,△ABC為正三角形,CE⊥平面ABC,BD∥CE,且CE=AC=2BD,M是AE的中點(diǎn).
(1)求證:DE=DA;
(2)求證:平面BDM⊥平面ECA;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com