相關習題
 0  155841  155849  155855  155859  155865  155867  155871  155877  155879  155885  155891  155895  155897  155901  155907  155909  155915  155919  155921  155925  155927  155931  155933  155935  155936  155937  155939  155940  155941  155943  155945  155949  155951  155955  155957  155961  155967  155969  155975  155979  155981  155985  155991  155997  155999  156005  156009  156011  156017  156021  156027  156035  266669 

科目: 來源: 題型:解答題

據(jù)民生所望,相關部門對所屬單位進行整治性核查,標準如下表:

規(guī)定初查累計權重分數(shù)為10分或9分的不需要復查并給予獎勵,10分的獎勵18萬元;9分的獎勵8萬元;初查累計權重分數(shù)為7分及其以下的停下運營并罰款1萬元;初查累計權重分數(shù)為8分的要對不合格指標進行復查,最終累計權重得分等于初查合格部分與復查部分得分的和,最終累計權重分數(shù)為10分方可繼續(xù)運營,否則停業(yè)運營并罰款1萬元.
(1)求一家單位既沒獲獎勵又沒被罰款的概率;
(2)求一家單位在這次整治性核查中所獲金額X(萬元)的分布列和數(shù)學期望(獎勵為正數(shù),罰款為負數(shù)).

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分12分)為迎接2014年“馬”年的到來,某校舉辦猜獎活動,參與者需先后回答兩道選擇題,問題有三個選項,問題有四個選項,但都只有一個選項是正確的,正確回答問題可獲獎金元,正確回答問題可獲獎金元,活動規(guī)定:參與者可任意選擇回答問題的順序,如果第一個問題回答正確,則繼續(xù)答題,否則該參與者猜獎活動終止,假設一個參與者在回答問題前,對這兩個問題都很陌生.
(1)如果參與者先回答問題,求其恰好獲得獎金元的概率;
(2)試確定哪種回答問題的順序能使該參與者獲獎金額的期望值較大.

查看答案和解析>>

科目: 來源: 題型:解答題

拋擲兩顆質地均勻的骰子,計算:
(1)事件“兩顆骰子點數(shù)相同”的概率;
(2)事件“點數(shù)之和小于7”的概率;
(3)事件“點數(shù)之和等于或大于11”的概率。

查看答案和解析>>

科目: 來源: 題型:解答題

長沙市某中學在每年的11月份都會舉行“社團文化節(jié)”,開幕式當天組織舉行大型的文藝表演,同時邀請36名不同社團的社長進行才藝展示.其中有的社長是高中學生,的社長是初中學生,高中社長中有是高一學生,初中社長中有是初二學生.
(1)若校園電視臺記者隨機采訪3位社長,求恰有1人是高一學生且至少有1人是初中學生的概率;
(2)若校園電視臺記者隨機采訪3位初中學生社長,設初二學生人數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:解答題

某高中為了推進新課程改革,滿足不同層次學生的需求,決定從高一年級開始,在每周的周一、周三、周五的課外活動期間同時開設數(shù)學、物理、化學、生物和信息技術輔導講座,每位有興趣的同學可以在期間的任何一天參加任何一門科目的輔導講座,也可以放棄任何一門科目的輔導講座。(規(guī)定:各科達到預先設定的人數(shù)時稱為滿座,否則稱為不滿座)統(tǒng)計數(shù)據(jù)表明,各學科講座各天的滿座的概率如下表:

根據(jù)上表:
(Ⅰ)求數(shù)學輔導講座在周一、周三、周五都不滿座的概率;
(Ⅱ)設周三各輔導講座滿座的科目數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:解答題

在一次搶險救災中,某救援隊的50名隊員被分別分派到四個不同的區(qū)域參加救援工作,其分布的情況如下表,從這50名隊員中隨機抽出2人去完成一項特殊任務.

區(qū)域
A
B
C
D
人數(shù)
20
10
5
15
(1)求這2人來自同一區(qū)域的概率;
(2)若這2人來自區(qū)域A,D,并記來自區(qū)域A隊員中的人數(shù)為X,求隨機變量X的分布列及數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:解答題

某學校的三個學生社團的人數(shù)分布如下表(每名學生只能參加一個社團):

 
圍棋社
舞蹈社
拳擊社
男生
5
10
28
女生
15
30
m
學校要對這三個社團的活動效果進行抽樣調查,按分層抽樣的方法從三個社團成員中抽取18人,結果拳擊社被抽出了6人.
(Ⅰ)求拳擊社團被抽出的6人中有5人是男生的概率;
(Ⅱ)設拳擊社團有X名女生被抽出,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:解答題

為了解某市市民對政府出臺樓市限購令的態(tài)度,在該市隨機抽取了50名市民進行調查,他們月收入(單位:百元)的頻數(shù)分布及對樓市限購令的贊成人數(shù)如下表:

月收入

[25,35)
[35,45)



頻數(shù)
5
10
15
10
5
5
贊成人數(shù)
4
8
8
5
2
1
將月收入不低于55的人群稱為“高收入族”,月收入低于55的人群稱為“非高收人族”。
(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表,有多大的把握認為贊不贊成樓市限購令與收入高低有關?
已知:,
<2.706時,沒有充分的證據(jù)判定贊不贊成樓市限購令與收入高低有關;
>2.706時,有90%的把握判定贊不贊成樓市限購令與收入高低有關;
>3.841時,有95%的把握判定贊不贊成樓市限購令與收入高低有關;
>6.635時,有99%的把握判定贊不贊成樓市限購令與收入高低有關。
 
非高收入族
高收入族
總計
贊成
 
 
 
不贊成
 
 
 
總計
 
 
 
(Ⅱ)現(xiàn)從月收入在[55,65)的人群中隨機抽取兩人,求所抽取的兩人中至少一人贊成樓市限購令的概率。

查看答案和解析>>

科目: 來源: 題型:解答題

從裝有大小相同的2個紅球和6個白球的袋子中,每摸出2個球為一次試驗,直到摸出的球中有紅球(不放回),則試驗結束.
(1)求第一次試驗恰摸到一個紅球和一個白球概率;
(2)記試驗次數(shù)為,求的分布列及數(shù)學期望

查看答案和解析>>

科目: 來源: 題型:解答題

為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下列表:

 
喜愛打籃球
不喜愛打籃球
合計
男生
 
5
 
女生
10
 
 
合計
 
 
50
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為
(1)請將上面的列聯(lián)表補充完整(不用寫計算過程);
(2)能否在犯錯誤的概率不超過0.005的前提下認為喜愛打籃球與性別有關?說明你的理由;
(3)現(xiàn)從女生中抽取2人進一步調查,設其中喜愛打籃球的女生人數(shù)為ξ,求ξ的分布列與期望.
下面的臨界值表供參考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式:K2=,其中n=a+b+c+d)

查看答案和解析>>

同步練習冊答案