【題目】已知如圖1所示,在邊長為12的正方形,中,,且,分別交于點,將該正方形沿,折疊,使得重合,構(gòu)成如圖2 所示的三棱柱,在該三棱柱底邊上有一點,滿足; 請在圖2 中解決下列問題:

(I)求證:當(dāng)時,//平面;

(Ⅱ)若直線與平面所成角的正弦值為,求的值.

【答案】(I)見解析;(II).

【解析】分析:(I)過,連接,,推出四邊形為平行四邊形,則,由此能證明//平面;(Ⅱ)根據(jù)及正方形邊長為,可推出,從而以軸,建立空間直角坐標系,設(shè)立各點坐標,然后求出平面的法向量,再根據(jù)直線與平面所成角的正弦值為,即可求得的值.

詳解:(I): ,連接,所以,

共面且平面交平面 ,

,

∴四邊形為平行四邊形,∴,

平面,平面,

//平面

(II):

,從而,.

.

分別以軸,則,.

設(shè)平面的法向量為,所以.

,則,,所以

的坐標為

∵直線與平面所成角的正弦值為,

∴解得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,為正三角形,為線段的中點.

(Ⅰ)求證:平面

(Ⅱ)若,求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在空間幾何體中,平面平面,都是邊長為2的等邊三角形,,點在平面上的射影在的平分線上,已知和平面所成角為.

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于 兩點,且.

1求該拋物線的方程;

2過點任意作互相垂直的兩條直線,分別交曲線于點.設(shè)線段的中點分別為,求證:直線恒過一個定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人去某地務(wù)工,其工作受天氣影響,雨天不能出工,晴天才能出工.其計酬方式有兩種,方式一:雨天沒收入,晴天出工每天元;方式而:雨天每天元,晴天出工每天元;三人要選擇其中一種計酬方式,并打算在下個月(天)內(nèi)的晴天都出工,為此三人作了一些調(diào)查,甲以去年此月的下雨天數(shù)(天)為依據(jù)作出選擇;乙和丙在分析了當(dāng)?shù)亟?/span>年此月的下雨天數(shù)()的頻數(shù)分布表(見下表)后,乙以頻率最大的值為依據(jù)作出選擇,丙以的平均值為依據(jù)作出選擇.

8

9

10

11

12

13

頻數(shù)

3

1

2

0

2

1

(Ⅰ)試判斷甲、乙、丙選擇的計酬方式,并說明理由;

(Ⅱ)根據(jù)統(tǒng)計范圍的大小,你覺得三人中誰的依據(jù)更有指導(dǎo)意義?

(Ⅲ)以頻率作為概率,求未來三年中恰有兩年,此月下雨不超過天的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合.對于的一個子集,若存在不大于的正整數(shù),使得對于中的任意一對元素,都有,則稱具有性質(zhì).

(Ⅰ)當(dāng)時,試判斷集合是否具有性質(zhì)?并說明理由.

(Ⅱ)若時,

①若集合具有性質(zhì),那么集合是否一定具有性質(zhì)?并說明理由;

②若集合具有性質(zhì),求集合中元素個數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中, 相交于點,點在線段上,,且平面

(1)求實數(shù)的值;

(2)若,, 求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象經(jīng)過點,且在點處的切線方程為.

(1)求函數(shù)的解析式;

(2)求函數(shù)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若處取得極值,求處的切線方程;

(2)討論的單調(diào)性;

(3)若函數(shù)上無零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案