【題目】近幾年,電商行業(yè)的蓬勃發(fā)展帶動(dòng)了快遞業(yè)的迅速增長(zhǎng),快遞公司攬收價(jià)格一般是采用“首重+續(xù)重”的計(jì)價(jià)方式.首重是指最低的計(jì)費(fèi)重量,續(xù)重是指超過(guò)首重部分的計(jì)費(fèi)重量,不滿(mǎn)一公斤按一公斤計(jì)費(fèi).某快遞網(wǎng)點(diǎn)將快件的攬收價(jià)格定為首重(不超過(guò)一公斤)8元,續(xù)重2/公斤(例如,若一個(gè)快件的重量是0.6公斤,按8元計(jì)費(fèi);若一個(gè)快件的重量是1.4公斤,按元計(jì)費(fèi)).根據(jù)歷史數(shù)據(jù),得到該網(wǎng)點(diǎn)攬收快件重量的頻率分布直方圖如下圖所示

1)根據(jù)樣本估計(jì)總體的思想,將頻率視作概率,求該網(wǎng)點(diǎn)攬收快件的平均價(jià)格;

2)為了獲得更大的利潤(rùn),該網(wǎng)點(diǎn)對(duì)“一天中收發(fā)一件快遞的平均成本(單位:元)與當(dāng)天攬收的快遞件數(shù)(單位:百件)之間的關(guān)系”進(jìn)行調(diào)查研究,得到相關(guān)數(shù)據(jù)如下表:

每天攬收快遞件數(shù)(百件)

2

3

4

5

8

每件快遞的平均成本(元)

5.6

4.8

4.4

4.3

4.1

根據(jù)以上數(shù)據(jù),技術(shù)人員分別根據(jù)甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程:

方程甲:,方程乙:.

①為了評(píng)價(jià)兩種模型的擬合效果,根據(jù)上表數(shù)據(jù)和相應(yīng)回歸方程,將以下表格填寫(xiě)完整(結(jié)果保留一位小數(shù)),分別計(jì)算模型甲與模型乙的殘差平方和,并依此判斷哪個(gè)模型的擬合效果更好(備注:稱(chēng)為相應(yīng)于點(diǎn)的殘差,殘差平方和;

每天攬收快遞件數(shù)/百件

2

3

4

5

8

每天快遞的平均成本/

5.6

4.8

4.4

4.3

4.1

模型甲

預(yù)報(bào)值

5.2

5.0

4.8

殘差

0.2

0.4

模型乙

預(yù)報(bào)值

5.5

4.8

4.5

預(yù)報(bào)值

0

0.1

②預(yù)計(jì)該網(wǎng)點(diǎn)今年625日(端午節(jié))一天可以攬收1000件快遞,試根據(jù)①中確定的擬合效果較好的回歸模型估計(jì)該網(wǎng)點(diǎn)當(dāng)天的總利潤(rùn)(總利潤(rùn)=(平均價(jià)格-平均成本)×總件數(shù)).

【答案】1元(2)①填表見(jiàn)解析;;模型乙的擬合效果較好②

【解析】

1)根據(jù)頻率分布直方圖得出快件價(jià)格的頻率分布表,再計(jì)算平均價(jià)格;

2)①分別把代入兩模型方程,計(jì)算預(yù)報(bào)值和殘差平方和;

②把代入回歸方程,得出平均成本,再計(jì)算利潤(rùn).

解:(1)根據(jù)攬收快件重量的頻率分布直方圖,得到其價(jià)格的頻率分布表如下:

價(jià)格

8

10

12

14

16

頻率

0.45

0.25

0.15

0.1

0.05

所以平均價(jià)格為

.

2)①表中數(shù)據(jù)填寫(xiě)如下:

每天攬收快遞件數(shù)/百件

2

3

4

5

8

每件快遞的平均成本/

5.6

4.8

4.4

4.3

4.1

模型甲

預(yù)報(bào)值

5.2

5.0

4.8

4.6

4.0

殘差

0.2

0.4

0.3

模型乙

預(yù)報(bào)值

5.5

4.8

4.5

4.3

4.0

殘差

0

0.1

0

計(jì)算可得:;

.

因?yàn)?/span>,所以模型乙的擬合效果較好.

②模型乙的回歸方程為,

當(dāng)一天攬收件數(shù)為1000時(shí),則收發(fā)一件快遞的平均成本為,

可以估計(jì)該網(wǎng)點(diǎn)當(dāng)天的總利潤(rùn)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正四棱錐PABCD的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為2,過(guò)點(diǎn)A作一個(gè)與側(cè)棱PC垂直的平面α,則平面α被此正四棱錐所截的截面面積為_____,平面α將此正四棱錐分成的兩部分體積的比值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上,直線(xiàn)與橢圓的另一個(gè)交點(diǎn)分別為.

1)若點(diǎn)坐標(biāo)為,且,求橢圓的方程;

2)設(shè),,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線(xiàn)過(guò)點(diǎn),傾斜角為

1)求曲線(xiàn)的直角坐標(biāo)方程與直線(xiàn)l的參數(shù)方程;

2)設(shè)直線(xiàn)與曲線(xiàn)交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年全球爆發(fā)新冠肺炎,人感染了新冠肺炎病毒后常見(jiàn)的呼吸道癥狀有:發(fā)熱、咳嗽、氣促和呼吸困難等,嚴(yán)重時(shí)會(huì)危及生命.隨著疫情的發(fā)展,自202025日起,武漢大面積的爆發(fā)新冠肺炎,政府為了及時(shí)收治輕癥感染的群眾,逐步建立起了14家方艙醫(yī)院,其中武漢體育中心方艙醫(yī)院從212日開(kāi)艙至38日閉倉(cāng),累計(jì)收治輕癥患者1056人.據(jù)部分統(tǒng)計(jì)該方艙醫(yī)院從226日至32日輕癥患者治愈出倉(cāng)人數(shù)的頻數(shù)表與散點(diǎn)圖如下:

日期

2.26

2.27

2.28

2.29

3.1

3.2

序號(hào)

1

2

3

4

5

6

出倉(cāng)人數(shù)

3

8

17

31

68

168

根據(jù)散點(diǎn)圖和表中數(shù)據(jù),某研究人員對(duì)出倉(cāng)人數(shù)與日期序號(hào)進(jìn)行了擬合分析.從散點(diǎn)圖觀(guān)察可得,研究人員分別用兩種函數(shù)①分析其擬合效果.其相關(guān)指數(shù)可以判斷擬合效果,R2越大擬合效果越好.已知的相關(guān)指數(shù)為

1)試根據(jù)相關(guān)指數(shù)判斷.上述兩類(lèi)函數(shù),哪一類(lèi)函數(shù)的擬合效果更好?(注:相關(guān)系數(shù)與相關(guān)指數(shù)R2滿(mǎn)足,參考數(shù)據(jù)表中

2根據(jù)(1)中結(jié)論,求擬合效果更好的函數(shù)解析式;(結(jié)果保留小數(shù)點(diǎn)后三位)

33日實(shí)際總出倉(cāng)人數(shù)為216人,按①中的回歸模型計(jì)算,差距有多少人?

(附:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)為

相關(guān)系數(shù)

參考數(shù)據(jù):

3.5

49.17

15.17

3.13

894.83

19666.83

10.55

13.56

3957083

,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線(xiàn)y2=4x的焦點(diǎn)的直線(xiàn)l與拋物線(xiàn)交于A,B兩點(diǎn),設(shè)點(diǎn)M30.若△MAB的面積為,則|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓周率π是數(shù)學(xué)中一個(gè)非常重要的數(shù),歷史上許多中外數(shù)學(xué)家利用各種辦法對(duì)π進(jìn)行了估算.現(xiàn)利用下列實(shí)驗(yàn)我們也可對(duì)圓周率進(jìn)行估算.假設(shè)某校共有學(xué)生N人,讓每人隨機(jī)寫(xiě)出一對(duì)小于1的正實(shí)數(shù)a,b,再統(tǒng)計(jì)出a,b1能構(gòu)造銳角三角形的人數(shù)M,利用所學(xué)的有關(guān)知識(shí),則可估計(jì)出π的值是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)處的切線(xiàn)斜率為2,試求a的值及此時(shí)的切線(xiàn)方程;

2)若函數(shù)在區(qū)間(其中為自然對(duì)數(shù)的底數(shù))上有唯一的零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了更好地貫徹黨的五育并舉的教育方針,某市要對(duì)全市中小學(xué)生體能達(dá)標(biāo)情況進(jìn)行了解,決定通過(guò)隨機(jī)抽樣選擇幾個(gè)樣本校對(duì)學(xué)生進(jìn)行體能達(dá)標(biāo)測(cè)試,并規(guī)定測(cè)試成績(jī)低于60分為不合格,否則為合格,若樣本校學(xué)生不合格人數(shù)不超過(guò)其總?cè)藬?shù)的5%,則該樣本校體能達(dá)標(biāo)為合格.已知某樣本校共有1000名學(xué)生,現(xiàn)從中隨機(jī)抽取40名學(xué)生參加體能達(dá)標(biāo)測(cè)試,首先將這40名學(xué)生隨機(jī)分為甲、乙兩組,其中甲乙兩組學(xué)生人數(shù)的比為3:2,測(cè)試后,兩組各自的成績(jī)統(tǒng)計(jì)如下:甲組的平均成績(jī)?yōu)?/span>70,方差為16,乙組的平均成績(jī)?yōu)?/span>80,方差為36.

1)估計(jì)該樣本校學(xué)生體能測(cè)試的平均成績(jī);

2)求該樣本校40名學(xué)生測(cè)試成績(jī)的標(biāo)準(zhǔn)差s;

3)假設(shè)該樣本校體能達(dá)標(biāo)測(cè)試成績(jī)服從正態(tài)分布,用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為的估計(jì)值,利用估計(jì)值估計(jì)該樣本校學(xué)生體能達(dá)標(biāo)測(cè)試是否合格?

(注:1.本題所有數(shù)據(jù)的最后結(jié)果都精確到整數(shù);2若隨機(jī)變量z服從正態(tài)分布,則,,

查看答案和解析>>

同步練習(xí)冊(cè)答案