【題目】已知函數(shù).

1)若函數(shù)處的切線斜率為2,試求a的值及此時的切線方程;

2)若函數(shù)在區(qū)間(其中為自然對數(shù)的底數(shù))上有唯一的零點,求實數(shù)a的取值范圍.

【答案】1;(2.

【解析】

1)根據(jù)導數(shù)的幾何意義求解即可;

2)討論參數(shù)的值,確定函數(shù)在區(qū)間的單調(diào)性,從而根據(jù)零點的個數(shù),得出實數(shù)a的取值范圍.

1)由,(.

由已知.

可得:

又此時.

所以所求的切線方程為:.

即:

2,其中

①當時,在區(qū)間恒成立,在區(qū)間單調(diào)遞增

又∵,∴函數(shù)在區(qū)間上有唯一的零點,符合題意.

②當時,在區(qū)間恒成立,在區(qū)間單調(diào)遞減

又∵,∴函數(shù)在區(qū)間上有唯一的零點,符合題意.

③當

i時,,單調(diào)遞減

又∵,∴函數(shù)在區(qū)間上有唯一的零點

ii)當時,單調(diào)遞增

∴要使在區(qū)間上有唯一的零點,只有當時符合題意

,即

時,函數(shù)在區(qū)間上有唯一的零點;

∴綜上a的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在全球抗擊新冠肺炎疫情期間,我國醫(yī)療物資生產(chǎn)企業(yè)加班加點生產(chǎn)口罩、防護服、消毒水等防疫物品,保障抗疫一線醫(yī)療物資供應,在國際社會上贏得一片贊譽.我國某口罩生產(chǎn)廠商在加大生產(chǎn)的同時.狠抓質(zhì)量管理,不定時抽查口罩質(zhì)量,該廠質(zhì)檢人員從某日所生產(chǎn)的口罩中隨機抽取了100個,將其質(zhì)量指標值分成以下五組:,,,,得到如下頻率分布直方圖.

1)規(guī)定:口罩的質(zhì)量指標值越高,說明該口罩質(zhì)量越好,其中質(zhì)量指標值低于130的為二級口罩,質(zhì)量指標值不低于130的為一級口罩.現(xiàn)從樣本口罩中利用分層抽樣的方法隨機抽取8個口罩,再從中抽取3個,記其中一級口罩個數(shù)為,求的分布列及數(shù)學期望;

2)在2020五一勞動節(jié)前,甲,乙兩人計劃同時在該型號口罩的某網(wǎng)絡購物平臺上分別參加、兩店各一個訂單秒殺搶購,其中每個訂單由個該型號口罩構成.假定甲、乙兩人在、兩店訂單秒殺成功的概率分別為,記甲、乙兩人搶購成功的訂單總數(shù)量、口罩總數(shù)量分別為,,

①求的分布列及數(shù)學期望;

②求當的數(shù)學期望取最大值時正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近幾年,電商行業(yè)的蓬勃發(fā)展帶動了快遞業(yè)的迅速增長,快遞公司攬收價格一般是采用“首重+續(xù)重”的計價方式.首重是指最低的計費重量,續(xù)重是指超過首重部分的計費重量,不滿一公斤按一公斤計費.某快遞網(wǎng)點將快件的攬收價格定為首重(不超過一公斤)8元,續(xù)重2/公斤(例如,若一個快件的重量是0.6公斤,按8元計費;若一個快件的重量是1.4公斤,按元計費).根據(jù)歷史數(shù)據(jù),得到該網(wǎng)點攬收快件重量的頻率分布直方圖如下圖所示

1)根據(jù)樣本估計總體的思想,將頻率視作概率,求該網(wǎng)點攬收快件的平均價格;

2)為了獲得更大的利潤,該網(wǎng)點對“一天中收發(fā)一件快遞的平均成本(單位:元)與當天攬收的快遞件數(shù)(單位:百件)之間的關系”進行調(diào)查研究,得到相關數(shù)據(jù)如下表:

每天攬收快遞件數(shù)(百件)

2

3

4

5

8

每件快遞的平均成本(元)

5.6

4.8

4.4

4.3

4.1

根據(jù)以上數(shù)據(jù),技術人員分別根據(jù)甲、乙兩種不同的回歸模型,得到兩個回歸方程:

方程甲:,方程乙:.

①為了評價兩種模型的擬合效果,根據(jù)上表數(shù)據(jù)和相應回歸方程,將以下表格填寫完整(結果保留一位小數(shù)),分別計算模型甲與模型乙的殘差平方和,,并依此判斷哪個模型的擬合效果更好(備注:稱為相應于點的殘差,殘差平方和;

每天攬收快遞件數(shù)/百件

2

3

4

5

8

每天快遞的平均成本/

5.6

4.8

4.4

4.3

4.1

模型甲

預報值

5.2

5.0

4.8

殘差

0.2

0.4

模型乙

預報值

5.5

4.8

4.5

預報值

0

0.1

②預計該網(wǎng)點今年625日(端午節(jié))一天可以攬收1000件快遞,試根據(jù)①中確定的擬合效果較好的回歸模型估計該網(wǎng)點當天的總利潤(總利潤=(平均價格-平均成本)×總件數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐中,底面是正方形,側面底面,的中點,點上,且.

1)求證:;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,與圓有且只有兩個公共點.

1)求拋物線的方程;

2)經(jīng)過的動直線與拋物線交于兩點,試問在直線上是否存在定點,使得直線的斜率之和為直線斜率的倍?若存在,求出定點;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,,,

(1)求證:平面平面;

(2)在線段上是否存在點,使得平面與平面所成銳二面角為?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,動直線交拋物線AB兩點.

1)若,證明直線過定點,并求出該定點;

2)點M的中點,過點M作與y軸垂直的直線交拋物線C點;點N的中點,過點N作與y軸垂直的直線交拋物線于點P.設△的面積,△的面積為.

i)若過定點,求使取最小值時,直線的方程;

ii)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD為正方形,PA⊥平面ABCD,PA=AB,E為線段PB的中點,F為線段BC上的動點.

1)求證:AE⊥平面PBC;

2)試確定點F的位置,使平面AEF與平面PCD所成的銳二面角為30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,圓經(jīng)過橢圓的左,右焦點.

1)求橢圓的標準方程;

2)直線與橢圓交于點,線段的中點為,的垂直平分線與軸和軸分別交于兩點,是否存在實數(shù),使得的面積與為原點)的面積相等?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案