【題目】△ABC是等邊三角形,邊長為4,BC邊的中點為D,橢圓W以A,D為左、右兩焦點,且經(jīng)過B、C兩點.
(1)求該橢圓的標準方程;
(2)過點D且x軸不垂直的直線l交橢圓于M,N兩點,求證:直線BM與CN的交點在一條定直線上.

【答案】
(1)解:由題意可知兩焦點為 ,可得c= ,2a=6,可得a=3,則b= ,

因此橢圓的方程為


(2)證明:①當MN不與x軸重合時,

設MN的方程為 ,且 ,

設M(x1,y1),N(x2,y2

聯(lián)立橢圓與直線方程,可得 ,

消去x可得 ,

,

則BM: ①CN:

②﹣①得 ,

,

,

,即

②當MN與x軸重合時,即MN的方程x=0為,即M(3,0),N(﹣3,0).

即BM: ①,

CN:

聯(lián)立①和②消去y可得

綜上BM與CN的交點在直線 上.


【解析】(1)根據(jù)題意,結(jié)合橢圓的定義得出a,b,c的值,從而得到橢圓的方程,(2)對直線MN的斜率是否為零進行分別討論,①當斜率不為零時,設出直線MN的方程為x = m y + ,且 B ( , 2 ) , C ( , 2 ) ,設M(x1,y1),N(x2,y2),聯(lián)立直線方程和橢圓方程,用韋達定理表示出y1+y2, y 1 y 2,根據(jù)點的坐標表示出直線BM,直線CN的方程,聯(lián)立解出x=3,②當斜率為零時,MN的直線方程為x=0,代入計算也可得x=3,綜上結(jié)論得證.
【考點精析】認真審題,首先需要了解橢圓的標準方程(橢圓標準方程焦點在x軸:,焦點在y軸:).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,0<φ<π),其導函數(shù)f′(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( )

A.f(x)=4sin( x+ π)
B.f(x)=4sin( x+
C.f(x)=4sin( x+
D.f(x)=4sin( x+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一張邊長為12cm的正方形紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)所示放置.如果正四棱錐的主視圖是等邊三角形,如圖(3)所示,則正四棱錐的體積是(
A. cm3
B. cm3
C. cm3
D. cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .
(1)若 ,求函數(shù) 的極值;
(2)設函數(shù) ,求函數(shù) 的單調(diào)區(qū)間;
(3)若在區(qū)間 上不存在 ,使得 成立,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的正六邊形ABCDEF中,動圓Q的半徑為1,圓心在線段CD(含端點)上運動,P是圓Q上及內(nèi)部的動點,設向量 (m,n為實數(shù)),則m+n的取值范圍是( 。

A.(1,2]
B.[5,6]
C.[2,5]
D.[3,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù)x,y滿足不等式組 ,若目標函數(shù)z=kx+y僅在點(1,1)處取得最小值,則實數(shù)k的取值范圍是 ( 。
A.(﹣1,+∞)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(﹣∞,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖中的三個直角三角形是一個體積為20cm3的幾何體的三視圖,則該幾何體外接球的面積(單位:cm2)等于(  )

A.55π
B.75π
C.77π
D.65π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log2(3+x)﹣log2(3﹣x),
(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;
(2)已知f(sinα)=1,求α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年射陽縣洋馬鎮(zhèn)政府決定投資8千萬元啟動“鶴鄉(xiāng)菊!庇^光旅游及菊花產(chǎn)業(yè)項目.規(guī)劃從2017年起,在相當長的年份里,每年繼續(xù)投資2千萬元用于此項目.2016年該項目的凈收入為5百萬元(含旅游凈收入與菊花產(chǎn)業(yè)凈收入),并預測在相當長的年份里,每年的凈收入均為上一年的1.5倍.記2016年為第1年,f(n)為第1年至此后第n(n∈N*)年的累計利潤(注:含第n年,累計利潤=累計凈收入﹣累計投入,單位:千萬元),且當f(n)為正值時,認為該項目贏利.
(1)試求f(n)的表達式;
(2)根據(jù)預測,該項目將從哪一年開始并持續(xù)贏利?請說明理由.
(參考數(shù)據(jù): ,ln2≈0.7,ln3≈1.1)

查看答案和解析>>

同步練習冊答案