【題目】如圖中的三個(gè)直角三角形是一個(gè)體積為20cm3的幾何體的三視圖,則該幾何體外接球的面積(單位:cm2)等于( 。

A.55π
B.75π
C.77π
D.65π

【答案】C
【解析】解:由三視圖可知幾何體為三棱錐,作出其直觀圖三棱錐A﹣BCD;

由三視圖可知AB⊥平面BCD,BC⊥BD,BD=5,BC=6,AB=h,

∴三棱錐的體積V= × ×5×6h=20,∴h=4;

把三棱錐還原為長(zhǎng)方體,如圖所示;

則長(zhǎng)方體對(duì)角線的長(zhǎng)是三棱錐外接球的直徑2R;

∴(2R)2=42+52+62=77,

∴三棱錐外接球的面積為S=4πR2=77π.

所以答案是:C.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解由三視圖求面積、體積的相關(guān)知識(shí),掌握求體積的關(guān)鍵是求出底面積和高;求全面積的關(guān)鍵是求出各個(gè)側(cè)面的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將集合M={1,2,3,…15}表示為它的5個(gè)三元子集(三元集:含三個(gè)元素的集合)的并集,并且這些三元子集的元素之和都相等,則每個(gè)三元集的元素之和為;請(qǐng)寫出滿足上述條件的集合M的5個(gè)三元子集 . (只寫出一組)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義一個(gè)集合A的所有子集組成的集合叫做集合A的冪集,記為P(A),用n(A)表示有限集A的元素個(gè)數(shù),給出下列命題:①對(duì)于任意集合A,都有AP(A);②存在集合A,使得n[P(A)]=3;③用表示空集,若A∩B=,則P(A)∩P(B)=;④若A B,,則P(A) P(B);⑤若n(A)-n(B)=1,則n[P(A)]=2×n[P(B)]其中正確的命題個(gè)數(shù)為( )。
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC是等邊三角形,邊長(zhǎng)為4,BC邊的中點(diǎn)為D,橢圓W以A,D為左、右兩焦點(diǎn),且經(jīng)過(guò)B、C兩點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)D且x軸不垂直的直線l交橢圓于M,N兩點(diǎn),求證:直線BM與CN的交點(diǎn)在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐P﹣ABC中,PA=PC,底面ABC為正三角形.

(Ⅰ)證明:AC⊥PB;
(Ⅱ)若平面PAC⊥平面ABC,AC=PC=2,求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中P﹣ABCD,底面ABCD為邊長(zhǎng)為 的正方形,PA⊥BD.

(1)求證:PB=PD;
(2)若E,F(xiàn)分別為PC,AB的中點(diǎn),EF⊥平面PCD,求直線PB與平面PCD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=2x2﹣mx+2當(dāng)x∈[﹣2,+∞)時(shí)是增函數(shù),則m的取值范圍是( 。
A.(﹣∞,+∞)
B.[8,+∞)
C.(﹣∞,﹣8]
D.(﹣∞,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)y=f(x),恒有f(x)=f(2﹣x)成立,且f′(x)(x﹣1)>0,對(duì)任意的x1<x2 , 則f(x1)<f(x2)成立的充要條件是( )
A.x2>x1≥1
B.x1+x2>2
C.x1+x2≤2
D.x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(ax﹣1)ex(a≠0,e是自然對(duì)數(shù)的底數(shù)).
(1)若函數(shù)f(x)在區(qū)間[1,2]上是單調(diào)減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)求函數(shù)f(x)的極值;
(3)設(shè)函數(shù)f(x)圖象上任意一點(diǎn)處的切線為l,求l在x軸上的截距的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案