【題目】下列說(shuō)法正確的個(gè)數(shù)為(

為真為真的充分不必要條件;

②若數(shù)據(jù)的平均數(shù)為1,則的平均數(shù)為2

③在區(qū)間上隨機(jī)取一個(gè)數(shù),則事件發(fā)生的概率為

④已知隨機(jī)變量服從正態(tài)分布,且,則.

A.4B.3C.2D.1

【答案】C

【解析】

根據(jù)復(fù)合命題真假即可判斷①;根據(jù)平均數(shù)的計(jì)算公式可判斷②;對(duì)于③由輔助角公式化簡(jiǎn)三角函數(shù)式,結(jié)合正弦函數(shù)的圖像與性質(zhì)即可求得取值范圍,進(jìn)而由幾何概型概率計(jì)算得解;對(duì)于④根據(jù)正態(tài)分布曲線的性質(zhì),即可求得概率.

對(duì)于①,由復(fù)合命題為真”,可知為真,為真;為真”,為真,為真.所以為真為真的必要不充分條件,所以①錯(cuò)誤;

對(duì)于②,若數(shù)據(jù)的平均數(shù)為1,由平均數(shù)公式可知的平均數(shù)為2,所以②正確;

對(duì)于③,在區(qū)間.,解得.

則在區(qū)間上隨機(jī)取一個(gè)數(shù),則事件發(fā)生的概率為,所以③錯(cuò)誤;

對(duì)于④,隨機(jī)變量服從正態(tài)分布,.

,由正態(tài)分布曲線規(guī)律可知

,所以④正確.

綜上可知,正確的為②④

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù).

1)若,求處的切線方程;

2)若可上單調(diào)遞增,求的取值范圍;

3)求證:當(dāng)時(shí)在區(qū)間內(nèi)存在唯一極大值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱臺(tái)中,,G,H分別為,上的點(diǎn),平面平面,,.

1)證明:平面平面;

2)若,,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

1)若,討論函數(shù)的零點(diǎn)個(gè)數(shù)情況;

2)若,對(duì)于,存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的內(nèi)角、的對(duì)邊分別為,,,點(diǎn)的中點(diǎn),已知,,.

(1)求角的大小和的長(zhǎng);

(2)設(shè)的角平分線交,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的一個(gè)焦點(diǎn)為,四條直線,所圍成的區(qū)域面積為.

1)求的方程;

2)設(shè)過(guò)的直線交于不同的兩點(diǎn),設(shè)弦的中點(diǎn)為,且為原點(diǎn)),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓的離心率為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)直線交橢圓兩點(diǎn),線段的中點(diǎn)為,直線是線段的垂直平分線,求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)的極值;

(2)若,其中為自然對(duì)數(shù)的底數(shù),求證:函數(shù)有2個(gè)不同的零點(diǎn);

(3)若對(duì)任意的恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年4月,甲乙兩校的學(xué)生參加了某考試機(jī)構(gòu)舉行的大聯(lián)考,現(xiàn)對(duì)這兩校參加考試的學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)分析,數(shù)據(jù)統(tǒng)計(jì)顯示,考生的數(shù)學(xué)成績(jī)服從正態(tài)分布,從甲乙兩校100分及以上的試卷中用系統(tǒng)抽樣的方法各抽取了20份試卷,并將這40份試卷的得分制作成如圖所示的莖葉圖:

(1)試通過(guò)莖葉圖比較這40份試卷的兩校學(xué)生數(shù)學(xué)成績(jī)的中位數(shù);

(2)若把數(shù)學(xué)成績(jī)不低于135分的記作數(shù)學(xué)成績(jī)優(yōu)秀,根據(jù)莖葉圖中的數(shù)據(jù),判斷是否有的把握認(rèn)為數(shù)學(xué)成績(jī)?cè)?00分及以上的學(xué)生中數(shù)學(xué)成績(jī)是否優(yōu)秀與所在學(xué)校有關(guān)?

(3)從所有參加此次聯(lián)考的學(xué)生中(人數(shù)很多)任意抽取3人,記數(shù)學(xué)成績(jī)?cè)?34分以上的人數(shù)為,求的數(shù)學(xué)期望.

附:若隨機(jī)變量服從正態(tài)分布,則,

參考公式與臨界值表:,其中

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案