【題目】已知橢圓的一個焦點與拋物線的焦點重合,且橢圓的離心率為.

1)求橢圓的標準方程;

2)直線交橢圓、兩點,線段的中點為,直線是線段的垂直平分線,求證:直線過定點,并求出該定點的坐標.

【答案】(1);(2)直線過定點,詳見解析.

【解析】

(1)由焦點和離心率可得的值,則方程易求.

(2)設出直線的方程,與橢圓方程聯(lián)立,結(jié)合線段的中點,利用根與系數(shù)的關系(或點差法)可求出直線的斜率,進而可表示出直線的方程,判斷其所過定點.

1)拋物線的焦點為,則.

橢圓的離心率,則.

故橢圓的標準方程為.

2)方法一:顯然點在橢圓內(nèi)部,故,且直線的斜率不為.

當直線的斜率存在且不為時,易知,設直線的方程為,

代入橢圓方程并化簡得.

,則,解得.

因為直線是線段的垂直平分線,故直線,即.

,此時,于是直線過定點.

當直線的斜率不存在時,易知,此時直線,故直線過定點.

綜上所述,直線過定點.

方法二:顯然點在橢圓內(nèi)部,故,且直線的斜率不為.

當直線的斜率存在且不為時,設,,

則有,,

兩式相減得.

由線段的中點為,則,

故直線的斜率.

因為直線是線段的垂直平分線,故直線,即.

,此時,于是直線過定點.

當直線的斜率不存在時,易知,此時直線,故直線過定點.

綜上所述,直線過定點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】張軍自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家干果店,銷售的干果中有松子、開心果、腰果、核桃,價格依次為120/千克、80/千克、70/千克、40元千克,為增加銷量,張軍對這四種干果進行促銷:一次購買干果的總價達到150元,顧客就少付x(2xZ).每筆訂單顧客網(wǎng)上支付成功后,張軍會得到支付款的80%.

①若顧客一次購買松子和腰果各1千克,需要支付180元,則x=________

②在促銷活動中,為保證張軍每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 經(jīng)過橢圓 的左右焦點,且與橢圓在第一象限的交點為,且三點共線,直線交橢圓 兩點,且).

(1)求橢圓的方程;

(2)當三角形的面積取得最大值時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,為等邊三角形,且平面平面中點.

1)求證:平面;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐,,為等邊三角形,平面平面,中點.

(1)求證:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某數(shù)學小組到進行社會實踐調(diào)查,了解鑫鑫桶裝水經(jīng)營部在為如何定價發(fā)愁。進一步調(diào)研了解到如下信息:該經(jīng)營部每天的房租、人員工資等固定成本為200元,每桶水的進價是5元,銷售單價與日均銷售量的關系如下表:

銷售單價/元

6

7

8

9

10

11

12

日均銷售量/桶

480

440

400

360

320

280

240

根據(jù)以上信息,你認為該經(jīng)營部定價為多少才能獲得最大利潤?( )

A.每桶8.5B.每桶9.5C.每桶10.5D.每桶11.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某射擊小組有甲、乙、丙三名射手,已知甲擊中目標的概率是,甲、丙二人都沒有擊中目標的概率是,乙、丙二人都擊中目標的概率是.甲乙丙是否擊中目標相互獨立.

1)求乙、丙二人各自擊中目標的概率;

2)設乙、丙二人中擊中目標的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左,右焦點分別為,,點為橢圓上任意一點,點關于原點的對稱點為點,有,且當的面積最大時為等邊三角形.

1)求橢圓的標準方程;

2)與圓相切的直線交橢圓,兩點,若橢圓上存在點滿足,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一個粒子從原點出發(fā),在第一象限和兩坐標軸正半軸上運動,在第一秒時它從原點運動到點,接著它按圖所示在軸、軸的垂直方向上來回運動,且每秒移動一個單位長度,那么,在2018秒時,這個粒子所處的位置在點______.

查看答案和解析>>

同步練習冊答案