【題目】設(shè)p:實數(shù)x滿足x2﹣4ax+3a2<0,其中a>0,命題q:實數(shù)x 滿足;
(1)若a=1且p∧q為真,求實數(shù)x的取值范圍;
(2)若q是p的充分不必要條件,求實數(shù)a的取值范圍.
【答案】解:由x2﹣4ax+3a2<0,(x﹣3a)(x﹣a)<0,又a>0,
所以a<x<3a
由滿足;
得2<x≤3,即q為真時,實數(shù)x的取值范圍是2<x≤3,
(1)當a=1時,1<x<3,即p為真時實數(shù)x的取值范圍是1<x<3.若p∧q為真,則p真且q真,所以實數(shù)x的取值范圍是2<x<3
(2)q是p的充分不必要條件,即qp,反之不成立.,
設(shè)A={x|2<x<3},B={x|a<x<3a},則AB,
則0<a≤2,且3a>3所以實數(shù)a的取值范圍是1<a≤2
【解析】(1)p∧q為真,則p真且q真.分別求出p,q為真命題時x的范圍,兩者取交集即可.
(2)q是p的充分不必要條件,即qp,反之不成立,設(shè)A={x|2<x<3},B={x|a<x<3a},則AB,轉(zhuǎn)化為集合關(guān)系.
【考點精析】根據(jù)題目的已知條件,利用復合命題的真假的相關(guān)知識可以得到問題的答案,需要掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復合命題的真假與F的真假相反;“p且q”形式復合命題當P與q同為真時為真,其他情況時為假;“p或q”形式復合命題當p與q同為假時為假,其他情況時為真.
科目:高中數(shù)學 來源: 題型:
【題目】某商場一年購進某種貨物900噸,每次都購進x噸,運費為每次9萬元,一年的總存儲費用為9x萬元.
(1)要使一年的總運費與總存儲費用之和最小,則每次購買多少噸?
(2)要使一年的總運費與總存儲費用之和不超過585萬元,則每次購買量在什么范圍?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
(1)求的值;
(2)當x∈(﹣t,t](其中t∈(﹣1,1),且t為常數(shù))時,f(x)是否存在最小值,如果存在求出最小值;如果不存在,請說明理由;
(3)當f(x﹣2)+f(4﹣3x)≥0時,求滿足不等式f(x﹣2)+f(4﹣3x)≥0的x的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若,且在上單調(diào)遞增,求實數(shù)的取值范圍
(2)是否存在實數(shù),使得函數(shù)在上的最小值為?若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】求下列曲線的標準方程:
(1)與橢圓x2+4y2=16有相同焦點,過點p( , ),求此橢圓標準方程;
(2)求以原點為頂點,以坐標軸為對稱軸,且焦點在直線3x﹣4y﹣12=0的拋物線的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線過點P(﹣3 , 4),它的漸近線方程為y=±x.
(1)求雙曲線的標準方程;
(2)設(shè)F1和F2為該雙曲線的左、右焦點,點P在此雙曲線上,且|PF1||PF2|=41,求∠F1PF2的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的離心率為 , 焦距為2 , 過點D(1,0)且不過點E(2,1)的直線l與橢圓C交于A,B兩點,直線AE與直線x=3交于點M.
(1)求橢圓C的標準方程;
(2)若AB垂直于x軸,求直線MB的斜率。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com