已知橢圓的兩個焦點為(),(1,0),橢圓的長半軸長為2,則橢圓方程為(  )
A.B.
C.D.
D
因為橢圓的兩個焦點為(),(1,0),橢圓的長半軸長為2,則c=1,a=2,b2=3,因此橢圓方程為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,F(xiàn)1、F2分別是橢圓的左、右焦點,A和B是以O(O為坐標原點)為圓心,以|OF1|為半徑的圓與該橢圓的兩個交點,且△F2AB是等邊三角形,則橢圓的離心率為(  )
A.B.C.-1 D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的一個焦點為F,若橢圓上存在點P,滿足以橢圓短軸為直徑的圓與線段PF相切于線段PF的中點,則該橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某公園內有一橢圓形景觀水池,經(jīng)測量知,橢圓長軸長為20米,短軸長為16米,現(xiàn)以橢圓長軸所在直線為軸,短軸所在直線為軸,建立平面直角坐標系,如圖所示:

(1)為增加景觀效果,擬在水池內選定兩點安裝水霧噴射口,要求橢圓上各點到這兩點距離之和都相等,請指出水霧噴射口的位置(用坐標表示),并求橢圓的方程。
(2)為了增加水池的觀賞性,擬劃出一個以橢圓的長軸頂點A、短軸頂點B及橢圓上某點M構成的三角形區(qū)域進行夜景燈光布置,請確定點M的位置,使此三角形區(qū)域面積最大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分16分)

如圖,在平面直角坐標系中,已知點為橢圓的右頂點, 點,點在橢
圓上, .

(1)求直線的方程;
(2)求直線被過三點的圓截得的弦長;
(3)是否存在分別以為弦的兩個相外切的等圓?若存在,求出這兩個圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓方程為,它的一個頂點為,離心率
(1)求橢圓的方程;
(2)設直線l與橢圓交于A,B兩點,坐標原點O到直線l的距離為,求△AOB面
積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在坐標原點,焦點在軸上,橢圓上的點到焦點距離的最大值為,最小值為
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與橢圓相交于,兩點(不是左右頂點),且以為直徑的圓過橢圓的右頂點,求證:直線過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分) 若橢圓過點,離心率為,⊙O的圓心在原點,直徑為橢圓的短軸,⊙M的方程為,過⊙M上任一點P作⊙O的切線PA、PB,切點為A、B.
(1) 求橢圓的方程;
(2)若直線PA與⊙M的另一交點為Q,當弦PQ最大時,求直線PA的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

雙曲線與橢圓有相同的焦點,直線的一條漸近線,則雙曲線的方程是          

查看答案和解析>>

同步練習冊答案