如圖,F(xiàn)1、F2分別是橢圓的左、右焦點,A和B是以O(shè)(O為坐標原點)為圓心,以|OF1|為半徑的圓與該橢圓的兩個交點,且△F2AB是等邊三角形,則橢圓的離心率為(  )
A.B.C.-1 D.
C

試題分析:由題意,∵A、B是以O(shè)(O為坐標原點)為圓心、|OF1|為半徑的圓與該橢圓左半部分的兩個交點,∴|OA|=|OB|=|OF2|=c∵△F2AB是正三角形,∴|F2A|=c,∴|F1A|=c,∵|F1A|+|F2A|=2a∴(1+)c=2a,所以=,選C
點評:解決該試題的關(guān)鍵是根據(jù)A、B是以O(shè)(O為坐標原點)為圓心、|OF1|為半徑的圓與該橢圓左半部分的兩個交點,且△F2AB是正三角形,確定|F1A|=c,|F2A|=c,再利用橢圓的定義可得結(jié)論。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,且過點.
(1)求該橢圓的標準方程;
(2)設(shè)點,若是橢圓上的動點,求線段的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1、F2是橢圓+=1的兩焦點,經(jīng)點F2的直線交橢圓于點A、B,若|AB|=5,則|AF1|+|BF1|等于(  )
A.11           B.10           C.9        D.16

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線與橢圓相交于兩點,該橢圓上點使的面積等于6,這樣的點共有(   )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)在平面直角坐標系中,已知橢圓)的左焦點為,且點上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線的斜率為2且經(jīng)過橢圓的左焦點.求直線與該橢圓相交的弦長。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)點是曲線上的點,,則(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓=1的右焦點到直線y=x的距離是                    (  )
A.     B.C.1D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線,橢圓,直線與橢圓的公共點的個數(shù)為(      )
A. 1個B.1個或者2個C. 2個D. 0個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的兩個焦點為(),(1,0),橢圓的長半軸長為2,則橢圓方程為(  )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案