已知橢圓方程為,它的一個(gè)頂點(diǎn)為,離心率
(1)求橢圓的方程;
(2)設(shè)直線l與橢圓交于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為,求△AOB面
積的最大值.
(1)(2)
本試題主要是考查了橢圓方程的求解以及直線與橢圓位置關(guān)系的綜合運(yùn)用。
(1)設(shè)
依題意得……2分 解得,解得。
(2)聯(lián)立方程組,結(jié)合韋達(dá)定理和三角形的面積公式得到結(jié)論。
解:(1)設(shè),
依題意得……2分 解得  ….3分
橢圓的方程為  ….4分
(2)①當(dāng)AB ……5分   ②當(dāng)AB與軸不垂直時(shí),
設(shè)直線AB的方程為,
由已知     ………………………..6分
代入橢圓方程,整理得       
         ………………….….7分



當(dāng)且僅當(dāng)時(shí)等號(hào)成立,此時(shí) ………10分
③當(dāng)…..11分 綜上所述:
此時(shí)面積取最大值 ……………..12分
有其它解答,請(qǐng)老師們參考評(píng)分標(biāo)準(zhǔn)酌情給分!
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.已知橢圓的左、右焦點(diǎn)分別是F1(-c,0)、F2(c,0),Q是橢圓外的動(dòng)點(diǎn),滿足點(diǎn)P是線段F1Q與該橢圓的交點(diǎn),點(diǎn)T在線段F2Q上,并且滿足

(Ⅰ)設(shè)為點(diǎn)P的橫坐標(biāo),證明;
(Ⅱ)求點(diǎn)T的軌跡C的方程;
(Ⅲ)試問:在點(diǎn)T的軌跡C上,是否存在點(diǎn)M,使△F1M的面積S=若存在,求∠F1MF2的正切值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)點(diǎn)是曲線上的點(diǎn),,則(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是橢圓上的一點(diǎn),、為焦點(diǎn),,則的面積為(  )
A.   B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,曲線是以原點(diǎn)O為中心、為焦點(diǎn)的橢圓的一部分,曲線是以O(shè)為頂點(diǎn)、為焦點(diǎn)的拋物線的一部分,A是曲線的交點(diǎn)
為鈍角.

(1)求曲線的方程;
(2)過作一條與軸不垂直的直線,分別與曲線依次交于B、C、D、E四點(diǎn),若G為CD中點(diǎn)、H為BE中點(diǎn),問是否為定值?若是求出定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的兩個(gè)焦點(diǎn)為(),(1,0),橢圓的長(zhǎng)半軸長(zhǎng)為2,則橢圓方程為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在同一平面直角坐標(biāo)系中,經(jīng)過伸縮變換后,曲線C變?yōu)榍
則曲線C的方程為(    )
A.25x2+36y2=0B.9x2+100y2="0"
C.10x+24y=0D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的長(zhǎng)軸長(zhǎng)是(  )
A.  B.   C.  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的離心率為( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案