已知命題p:函數(shù)f(x)=|sin2x-
1
2
|的最小正周期為π;命題q:若函數(shù)f(x+1)為偶函數(shù),則f(x)關(guān)于x=1對稱.則下列命題是真命題的是( 。
A、p∧q
B、p∨q
C、(¬p)∧(¬q)
D、p∨(¬q)
考點(diǎn):復(fù)合命題的真假
專題:簡易邏輯
分析:分別判定命題p,q的真假性,利用復(fù)合命題站真假之間的關(guān)系即可得到結(jié)論.
解答: 解:函數(shù)f(x)=|sin2x-
1
2
|=
1
2
|2sin2x-1|
1
2
|cos2x|,
∵cos2x的周期是π,
∴函數(shù)f(x)=|sin2x-
1
2
|的最小正周期為
π
2
,即命題p是假命題.
若若函數(shù)f(x+1)為偶函數(shù),則f(-x+1)=f(x+1),即f(x)關(guān)于x=1對稱,∴命題q為真命題,
則p∨q為真命題,其余為假命題,
故選:B
點(diǎn)評:本題主要考查復(fù)合命題真假之間的關(guān)系,利用條件先判定命題p,q的真假是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長度,已知點(diǎn)P在曲線
x=1+cosα
y=sinα
(α為參數(shù))上,點(diǎn)Q在直線ρ=
3
2
sin(θ+
π
4
)
上,則|PQ|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|1<x<5},B={x|x2-2x-3≤0},則A∩(∁RB)=(  )
A、(1,5)
B、(3,5)
C、(1,3)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
滿足|
b
|=2|
a
|,
b
-
a
與2
a
+
b
的夾角為
π
3
,則
a
,
b
的夾角是( 。
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x、y、z是正數(shù),且x2+4y2+9z2=4,2x+4y+3z=6,則x+y+z等于(  )
A、
20
9
B、
11
5
C、
6
5
D、
11
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(x2-
1
ax
9(a∈R)的展開式中x9項(xiàng)的系數(shù)為-
21
2
,則函數(shù)f(x)=sinx與直線x=a、x=-a及x軸圍成的封閉圖形的面積為( 。
A、2-2cos2
B、4-2cos1
C、0
D、2+2cos2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x≤6,x∈N},B={x|x-3>0,x∈R},則A∩B=(  )
A、{4,5,6}
B、{0,4,5,6}
C、{3,4,5,6}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={x∈Z|
6
x+1
≥1},M∩N={1,2},∁U(M∪N)={0},(∁UM)∩N={4,5},則M=( 。
A、{1,2,3}
B、{-1,1,2,3}
C、{1,2}
D、{-1,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
x
1+yi
=1-i,其中x,y∈R,i為虛數(shù)單位,則x+yi=(  )
A、1+2iB、1-2i
C、2+iD、2-i

查看答案和解析>>

同步練習(xí)冊答案