【題目】由我國引領的5G時代已經(jīng)到來,5G的發(fā)展將直接帶動包括運營、制造、服務在內(nèi)的通信行業(yè)整體的快速發(fā)展,進而對GDP增長產(chǎn)生直接貢獻,并通過產(chǎn)業(yè)間的關(guān)聯(lián)效應和波及效應,間接帶動國民經(jīng)濟各行業(yè)的發(fā)展,創(chuàng)造岀更多的經(jīng)濟增加值.如圖是某單位結(jié)合近年數(shù)據(jù),對今后幾年的5G經(jīng)濟產(chǎn)出所做的預測.結(jié)合圖,下列說法不正確的是(

A.5G的發(fā)展帶動今后幾年的總經(jīng)濟產(chǎn)出逐年增加

B.設備制造商的經(jīng)濟產(chǎn)出前期增長較快,后期放緩

C.設備制造商在各年的總經(jīng)濟產(chǎn)出中一直處于領先地位

D.信息服務商與運營商的經(jīng)濟產(chǎn)出的差距有逐步拉大的趨勢

【答案】C

【解析】

由柱狀圖觀察信息服務商逐年增長并在后續(xù)2029年開始超過設備制造商GDP.

由圖可知設備制造商在各年的總經(jīng)濟產(chǎn)出中在前期處于領先地位,而后期是信息服務商處于領先地位,故C項表達錯誤.

故選:C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為t為參數(shù)),以坐標原點O為極點,以x軸的非負半軸為極軸,取相同的單位長度建立極坐標系,曲線C的極坐標方程為.

1)寫出直線的普通方程和曲線C的直角坐標方程;

2)已知定點,直線與曲線C分別交于P、Q兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一年級開設了豐富多彩的校本課程,現(xiàn)從甲、乙兩個班隨機抽取了5名學生校本課程的學分,統(tǒng)計如下表.

8

11

14

15

22

6

7

10

23

24

分別表示甲、乙兩班抽取的5名學生學分的方差,計算兩個班學分的方差.得______,并由此可判斷成績更穩(wěn)定的班級是______班.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司在2019年新研發(fā)了一種設備,為測試其性能,從設備生產(chǎn)的流水線上隨機抽取30件零件作為樣本,測量其重量后,得到下表的相關(guān)數(shù)據(jù).為了評判某臺設備的性能,從該設備加工的零件中任意抽取一件,記其重量為,并根據(jù)以下不等式進行評判(表示相應事件的概率):①;②;評判規(guī)則為:若同時滿足上述兩個不等式,則設備等級為;僅滿足其中一個,則等級為;若全部不滿足,則等級為.

經(jīng)計算,樣本的平均值,標準差,以頻率值作為概率的估計值.

重量/

18

19

21

22

23

24

26

28

29

30

件數(shù)/個

1

1

2

2

6

8

5

2

1

2

1)試判斷設備的性能等級;

2)若的零件認為是次品,其余為非次品.30個樣本中次品個數(shù)為,現(xiàn)需要從中取出全部次品和2件非次品形成個小樣本,該公司從該小樣本中機抽取2件零件,求取出的兩件零件中恰有一件是次品的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系.xOy中,曲線C1的參數(shù)方程為 為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=4sinθ.

1)求曲線C1的普通方程和C2的直角坐標方程;

2)已知曲線C2的極坐標方程為,點A是曲線C3C1的交點,點B是曲線C3C2的交點,且A,B均異于原點O,且|AB|=4,求α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

(1)設的極值點,求實數(shù)的值,并求的單調(diào)區(qū)間:

(2)時,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)記,試判斷函數(shù)的極值點的情況;

2)若有且僅有兩個整數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形和梯形所在平面互相垂直,,,.

1)求證:平面;

2)當的長為何值時,直線與平面所成角的大小為45°?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(Ⅰ)求橢圓方程;

(Ⅱ)設為橢圓右頂點,過橢圓的右焦點的直線與橢圓交于,兩點(異于),直線,分別交直線,兩點. 求證:,兩點的縱坐標之積為定值.

查看答案和解析>>

同步練習冊答案