若關(guān)于實(shí)數(shù)x的不等式|2x-2|-|2x-1-2|<3的解集為A,則A為
 
考點(diǎn):絕對(duì)值不等式的解法
專題:選作題,不等式的解法及應(yīng)用,不等式
分析:換元,再由零點(diǎn)進(jìn)行分段,去絕對(duì)值后求解一次不等式,最后取并集,即可得出結(jié)論.
解答: 解:令t=2x-1(t>0),則不等式|2x-2|-|2x-1-2|<3可化為不等式|2t-2|-|t-2|<3,
當(dāng)0<t<1時(shí),不等式|2t-2|-|t-2|<3化為-t<3,則t>-3,所以,t的范圍是0<t<1;
當(dāng)1≤t≤2時(shí),不等式|2t-2|-|t-2|<3化為3t-4<4,即t<
7
3
,所以,t的范圍是1≤t≤2;
當(dāng)t>2時(shí),不等式|2t-2|-|t-2|<3化為t<3,則2<t<3.
綜上,0<t<3,
∴2x-1<3,
∴x<log26,
故答案為:(-∞,log26).
點(diǎn)評(píng):本題考查了絕對(duì)值不等式的解法,考查了不等式的分段問題,分段求解后取并集得原不等式的解集,此題是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一個(gè)底面半徑為
3
的圓柱被與其底面所成角為30°的平面所截,其截面是一個(gè)橢圓C.
(Ⅰ)求該橢圓C的長軸長;
(Ⅱ)以該橢圓C的中心為原點(diǎn),長軸所在的直線為x軸,建立平面直角坐標(biāo)系,求橢圓C的任意兩條互相垂直的切線的交點(diǎn)P的軌跡方程;
(Ⅲ)設(shè)(Ⅱ)中的兩切點(diǎn)分別為A,B,求點(diǎn)P到直線AB的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個(gè)人數(shù)很多的團(tuán)體中普查某種疾病,為此要抽N個(gè)人的血,可以用兩種方法進(jìn)行.(1)將每個(gè)人的血分別去驗(yàn),這就需N次.(2)按k個(gè)人一組進(jìn)行分組,把從k個(gè)人抽出來的血混在一起進(jìn)行檢驗(yàn),如果這混合血液呈陰性反應(yīng),就說明k個(gè)人的血液都呈陰性反應(yīng),這樣,這k個(gè)人的血就只需驗(yàn)一次.若呈陽性,則再對(duì)這k個(gè)人的血液分別進(jìn)行化驗(yàn).這樣,這k個(gè)人的血總共要化驗(yàn)k+1次.假設(shè)每個(gè)人化驗(yàn)呈陽性的概率為p,且這些人的試驗(yàn)反應(yīng)是相互獨(dú)立的.
(Ⅰ)設(shè)以k個(gè)人為一組時(shí),記這k個(gè)人總的化驗(yàn)次數(shù)為X,求X的分布列與數(shù)學(xué)期望;
(Ⅱ)設(shè)以k個(gè)人為一組,從每個(gè)人平均需化驗(yàn)的次數(shù)的角度說明,若p=0.1,選擇適當(dāng)?shù)膋,按第二種方法可以減少化驗(yàn)的次數(shù),并說明k取什么值時(shí)最適宜.(取ln0.9=-0.105)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓錐的側(cè)面積是底面積的3倍,則其母線與底面角的大小為
 
(結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角梯形ABCD中,AB=2DC=2AD=2,∠DAB=∠ADC=90°,將△DBC沿BD向上折起,使面ABD垂直于面BDC,則三棱錐C-DAB的外接球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的體積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y為正實(shí)數(shù)且
2
x
+
1
y
=1,若x+2y≥m2-5m-6恒成立,則m范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
(1)“cosα=-
3
2
”是“α=2kπ+
6
,k∈Z”的必要不充分條件;
(2)終邊在y軸上的角的集合是{a|a=
2
,k∈Z}.
(3)函數(shù)y=sin(2x-
π
3
)的一個(gè)單調(diào)增區(qū)間是[-
π
12
12
];
(4)設(shè)f(x)=sin(ωx+φ),其中ω>0,則f(x)是偶函數(shù)的充要條件是f′(0)=0;
(5)為得到函數(shù)y=cos(2x+
π
3
)的圖象,只需將函數(shù)y=sin2x的圖象向左平移
12
個(gè)長度單位.
其中真命題的序號(hào)是
 
(把所有真命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:①函數(shù)y=
x
x2+4
在區(qū)間[1,3]上是增函數(shù);
②二項(xiàng)式(
x
-
1
3x
)5
的展開式中常數(shù)項(xiàng)為-10;
③函數(shù)y=sin x(x∈[-π,π])圖象與x軸圍成的圖形的面積是S=
π
sinxdx;
④若ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,則P(ξ≥2)=0.2.
其中真命題的序號(hào)是(請(qǐng)將所有正確命題的序號(hào)都填上)
 

查看答案和解析>>

同步練習(xí)冊(cè)答案