若圓錐的側(cè)面積是底面積的3倍,則其母線與底面角的大小為
 
(結(jié)果用反三角函數(shù)值表示).
考點(diǎn):旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))
專(zhuān)題:空間位置關(guān)系與距離
分析:由已知中圓錐的側(cè)面積是底面積的3倍,可得圓錐的母線是圓錐底面半徑的3倍,在軸截面中,求出母線與底面所成角的余弦值,進(jìn)而可得母線與軸所成角.
解答: 解:設(shè)圓錐母線與軸所成角為θ,
∵圓錐的側(cè)面積是底面積的3倍,
πrl
πr2
=
l
r
=3,
即圓錐的母線是圓錐底面半徑的3倍,
故圓錐的軸截面如下圖所示:

則cosθ=
r
l
=
1
3

∴θ=arccos
1
3
,
故答案為:arccos
1
3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是旋轉(zhuǎn)體,其中根據(jù)已知得到圓錐的母線是圓錐底面半徑的3倍,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),若點(diǎn)F2關(guān)于直線y=
b
a
x的對(duì)稱(chēng)點(diǎn)M也在雙曲線上,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ),(ω>0,A>0,φ∈(0,
π
2
))的部分圖象如圖所示,其中點(diǎn)P是圖象的一個(gè)最高點(diǎn).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)已知α∈(π,
2
),且f(
α
2
-
12
)=
6
5
,求f(
α
2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)多面體的直觀圖、正(主)視圖、側(cè)(左)視圖、俯視圖如圖,M、N分別為A1B、B1C1的中點(diǎn).

下列結(jié)論中正確的是
 
.(填上所有正確項(xiàng)的序號(hào))
①線MN與A1C 相交;②MN⊥BC;③MN∥平面ACC1A1;④三棱錐N-A1BC的體積為V N-A1BC=
1
6
a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)D是圖中邊長(zhǎng)為2的正方形區(qū)域,E是函數(shù)y=x3的 圖象與x軸及x=±1圍成的陰影區(qū)域.向D中隨機(jī)投一點(diǎn),則該點(diǎn)落入E中的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由曲線y=9-x2,直線y=x+7所圍圖形面積S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于實(shí)數(shù)x的不等式|2x-2|-|2x-1-2|<3的解集為A,則A為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=cos(-2x-
π
3
)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩條漸近線與拋物線y2=2px(p>0)的準(zhǔn)線分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).若雙曲線的離心率為
2
,△AOB的面積為1,則p=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案