【題目】已知E,F(xiàn)分別是棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1的棱BC,CC1的中點(diǎn),則截面AEFD1與底面ABCD所成二面角的正弦值是

【答案】
【解析】解:以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
A(1,0,0),E( ,1,0),F(xiàn)(0,1, ),
=(﹣ ,1,0), =(﹣1,1, ),
設(shè)平面AEFD1的法向量 =(x,y,z),
,取x=2,得 =(2,1,2),
平面ABCD的法向量 =(0,0,1),
截面AEFD1與底面ABCD所成二面角為θ,
cosθ= =
∴sinθ= =
∴截面AEFD1與底面ABCD所成二面角的正弦值是
故答案為:

以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出截面AEFD1與底面ABCD所成二面角的正弦值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥平面ABC.若AB=AC=AA1=1,BC= ,則異面直線A1C與B1C1所成的角為(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=cos( x+ )的圖象向右平移φ(φ>0)個(gè)單位,所得函數(shù)圖象關(guān)于y軸對(duì)稱,則φ的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對(duì)稱軸,且f(x)在( , )單調(diào),則ω的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中邊長(zhǎng)為1,P、Q分別為BC、CD上的點(diǎn),△CPQ周長(zhǎng)為2.
(1)求PQ的最小值;
(2)試探究求∠PAQ是否為定值,若是給出證明;不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線實(shí)軸長(zhǎng)為6,一條漸近線方程為4x﹣3y=0.過雙曲線的右焦點(diǎn)F作傾斜角為 的直線交雙曲線于A、B兩點(diǎn)
(1)求雙曲線的方程;
(2)求線段AB的中點(diǎn)C到焦點(diǎn)F的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)棱垂直于底面,底面是邊長(zhǎng)為2的正三角形,側(cè)棱長(zhǎng)為3,則BB1與平面AB1C1所成的角是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各命題中不正確的是(
A.函數(shù)f(x)=ax+1(a>0,a≠1)的圖象過定點(diǎn)(﹣1,1)
B.函數(shù) 在[0,+∞)上是增函數(shù)
C.函數(shù)f(x)=logax(a>0,a≠1)在(0,+∞)上是增函數(shù)
D.函數(shù)f(x)=x2+4x+2在(0,+∞)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ex+4sin3x+1,x∈(﹣1,1),若f(1﹣a)+f(1﹣a2)>2成立,則實(shí)數(shù)a的取值范圍是(
A.(﹣2,1)
B.(0,1)
C.
D.(﹣∞,﹣2)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案