【題目】函數(shù)f(x)=cos( x+ )的圖象向右平移φ(φ>0)個單位,所得函數(shù)圖象關(guān)于y軸對稱,則φ的最小值為

【答案】
【解析】解:∵函數(shù)f(x)=cos( x+ )的圖象向右平移φ個單位,

所得圖象對應(yīng)的函數(shù)解析式為:y=cos( φ+

由于其圖象關(guān)于y軸對稱,

φ+ =kπ,k∈z,

∴φ= ﹣2kπ,k∈z,

由φ>0,可得:當(dāng)k=0時,φ的最小正值是

所以答案是:

【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)y=Asin(ωx+φ)的圖象變換,掌握圖象上所有點(diǎn)向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不等式組 表示的平面區(qū)域為M,直線y=kx﹣1與區(qū)域M沒有公共點(diǎn),則實(shí)數(shù)k的最大值為(
A.3
B.0
C.﹣3
D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(a﹣ )(a∈R).若關(guān)于x的方程ln[(4﹣a)x+2a﹣5]﹣f(x)=0的解集中恰好有一個元素,則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐S﹣ABC中,E為棱SC的中點(diǎn),若AC=2 ,SA=SB=AB=BC=SC=2,則異面直線AC與BE所成的角為(

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 的離心率 ,橢圓上一點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4.
(1)求橢圓C的方程;
(2)直線l與橢圓交于A,B兩點(diǎn),且AB中點(diǎn)為 ,求直線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題:
(1)利用計算機(jī)產(chǎn)生0~1之間的均勻隨機(jī)數(shù)a,則事件“3a﹣1>0”發(fā)生的概率為 ;
(2)“x+y≠0”是“x≠1或y≠﹣1”的充分不必要條件;
(3)如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β;
(4)設(shè) 是非零向量,已知命題p:若 , ,則 ;命題q:若 ,則 ,則“p∨q”是真命題.
其中說法正確的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)對任意的x都有f(x+2)﹣f(x)=﹣4x+4,且f(0)=0.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=f(x)+m,(m∈R). ①若存在實(shí)數(shù)a,b(a<b),使得g(x)在區(qū)間[a,b]上為單調(diào)函數(shù),且g(x)取值范圍也為[a,b],求m的取值范圍;
②若函數(shù)g(x)的零點(diǎn)都是函數(shù)h(x)=f(f(x))+m的零點(diǎn),求h(x)的所有零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知E,F(xiàn)分別是棱長為1的正方體ABCD﹣A1B1C1D1的棱BC,CC1的中點(diǎn),則截面AEFD1與底面ABCD所成二面角的正弦值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)械廠今年進(jìn)行了五次技能考核,其中甲、乙兩名技術(shù)骨干得分的平均分相等,成績統(tǒng)計情況如莖葉圖所示(其中a是0﹣9的某個整數(shù)

(1)若該廠決定從甲乙兩人中選派一人去參加技能培訓(xùn),從成績穩(wěn)定性角度考慮,你認(rèn)為誰去比較合適?
(2)若從甲的成績中任取兩次成績作進(jìn)一步分析,在抽取的兩次成績中,求至少有一次成績在(90,100]之間的概率.

查看答案和解析>>

同步練習(xí)冊答案