【題目】已知雙曲線實軸長為6,一條漸近線方程為4x﹣3y=0.過雙曲線的右焦點F作傾斜角為 的直線交雙曲線于A、B兩點
(1)求雙曲線的方程;
(2)求線段AB的中點C到焦點F的距離.

【答案】
(1)解:由題得2a=6, ,

得a=3,b=4,

可得雙曲線方程為


(2)解:由題意可得F(5,0),直線AB的方程為y=x﹣5,

聯(lián)立

消去y,可得7x2+90x﹣369=0,

設(shè)A(x1,y1),B(x2,y2),可得

可得中點C的橫坐標為 ,

可得C(﹣ ,﹣ ),

F點橫坐標為x=5,可得F(5,0),

即有|CF|= =


【解析】(1)運用雙曲線的漸近線方程可得 ,結(jié)合條件2a=6,可得a,b,進而得到雙曲線的方程;(2)求得直線AB的方程,代入雙曲線的方程,消去y,可得x的方程,運用韋達定理和中點坐標公式可得C的坐標,再由兩點的距離公式計算即可得到所求值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=AA1=2,D、E分別為棱AB、BC的中點,點F在棱AA1上.
(1)證明:直線A1C1∥平面FDE;
(2)若F為棱AA1的中點,求三棱錐A1﹣DEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題:
(1)利用計算機產(chǎn)生0~1之間的均勻隨機數(shù)a,則事件“3a﹣1>0”發(fā)生的概率為 ;
(2)“x+y≠0”是“x≠1或y≠﹣1”的充分不必要條件;
(3)如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β;
(4)設(shè) 是非零向量,已知命題p:若 , ,則 ;命題q:若 ,則 ,則“p∨q”是真命題.
其中說法正確的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩艘輪船駛向一個不能同時停泊兩艘輪船的碼頭,它們在一晝夜內(nèi)任何時刻到達是等可能的.
(1)已知甲船上有男女乘客各3名,現(xiàn)從中任選3人出來做某件事情,求所選出的人中恰有一位女乘客的概率;
(2)如果甲船的停泊時間為4小時,乙船的停泊時間為2小時,求它們中的任何一條船不需要等待碼頭空出的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知E,F(xiàn)分別是棱長為1的正方體ABCD﹣A1B1C1D1的棱BC,CC1的中點,則截面AEFD1與底面ABCD所成二面角的正弦值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的中心在原點,焦點在x軸上,離心率等于 ,它的一個短軸端點是(0,2 ).

(1)求橢圓C的方程;
(2)P(2,3)、Q(2,﹣3)是橢圓上兩點,A、B是橢圓位于直線PQ兩側(cè)的兩動點,
①若直線AB的斜率為 ,求四邊形APBQ面積的最大值;
②當A、B運動時,滿足∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在(﹣∞,+∞)上的奇函數(shù),當x>0時,f(x)=4x﹣x2 , 若函數(shù)f(x)在區(qū)間[t,4]上的值域為[﹣4,4],則實數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+)( )的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式.
(2)函數(shù)y=f(x)的圖象可以由y=sinx的圖象變換后得到,請寫出一種變換過程的步驟(注明每個步驟后得到新的函數(shù)解析式).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某班學生喜愛體育運動是否與性別相關(guān),對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:

喜愛體育運動

不喜愛體育運動

合計

男生

5

女生

10

合計

50

已知在全部女生中隨機調(diào)查2人,恰好調(diào)查到的2位女生都喜愛體育運動的概率為
(1)請將上面的列聯(lián)表補充完整(不用寫計算過程)
(2)能偶在犯錯誤的概率不超過0.005的前提下認為喜愛體育運動與性別有關(guān)?說明你的理由;
下面的臨界值表供參考:

P(K2≥k)

0.10

0.05

0.025

0.010

0.005

0.001

k

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= .其中n=a+b+c+d)

查看答案和解析>>

同步練習冊答案