【題目】已知函數(shù).
(1)若,求曲線
在點(diǎn)
處的切線方程;
(2)若函數(shù)在
上是減函數(shù),求實(shí)數(shù)
的取值范圍;
(3)令,是否存在實(shí)數(shù)
,當(dāng)
(
是自然對數(shù)的底數(shù))時(shí),函數(shù)
的最小值是
?若存在,求出
的值;若不存在,說明理由.
【答案】(1);(2)
;(3)
.
【解析】試題分析:(1)欲求在點(diǎn)處的切線方程,只須求出其斜率的值即可,故先利用導(dǎo)數(shù)求出在x=1處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
(2)先對函數(shù)進(jìn)行求導(dǎo),根據(jù)函數(shù)
在[1,2]上是減函數(shù)可得到其導(dǎo)函數(shù)在[1,2]上小于等于0應(yīng)該恒成立,再結(jié)合二次函數(shù)的性質(zhì)可求得
的范圍.
(3)先假設(shè)存在,然后對函數(shù)進(jìn)行求導(dǎo),再對
的值分情況討論函數(shù)
在(0,e]上的單調(diào)性和最小值取得,可知當(dāng)
=e2能夠保證當(dāng)
時(shí)
有最小值3.
試題解析:
(1)當(dāng)時(shí),
所以,
所以曲線在點(diǎn)
處的切線方程為
.
(2)因?yàn)楹瘮?shù)在上是減函數(shù),
所以在[1,3]上恒成立.
令,有
,得
故.
(3)假設(shè)存在實(shí)數(shù)a,使有最小值3,
①時(shí),
,所以
在
上單調(diào)遞減,
,
(舍去)
②當(dāng)時(shí),
在
上恒成立, 所以
在
上單調(diào)遞減,
(舍去)
③當(dāng)時(shí),令
,得
,
所以在
上單調(diào)遞減,在
上單調(diào)遞增
所以,
,滿足條件
綜上,存在實(shí)數(shù),使得
時(shí),
有最小值3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)镈,若對任意x1,x2∈D,當(dāng)x1<x2時(shí),都有
f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個(gè)條件:①f(0)=0;②;③f(1-x)=2﹣f(x).則
( �。�
A. 1 B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉行的“國際馬拉松賽”,舉辦單位在活動推介晚會上進(jìn)行嘉賓現(xiàn)場抽獎(jiǎng)活動,抽獎(jiǎng)盒中裝有6個(gè)大小相同的小球,分別印有“快樂馬拉松”和“美麗綠城行”兩種標(biāo)志,搖勻后,參加者每次從盒中同時(shí)抽取兩個(gè)小球(取出后不再放回),若抽到的兩個(gè)球都印有“快樂馬拉松”標(biāo)志即可獲獎(jiǎng).并停止取球;否則繼續(xù)抽取,第一次取球就抽中獲一等獎(jiǎng),第二次取球抽中獲二等獎(jiǎng),第三次取球抽中獲三等獎(jiǎng),沒有抽中不獲獎(jiǎng).活動開始后,一位參賽者問:“盒中有幾個(gè)印有‘快樂馬拉松’的小球?”主持人說:“我只知道第一次從盒中同時(shí)抽兩球,不都是‘美麗綠城行’標(biāo)志的概率是
(1)求盒中印有“快樂馬拉松”小球的個(gè)數(shù);
(2)若用表示這位參加者抽取的次數(shù),求
的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程和直線
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在
上,點(diǎn)
在
上,求
的最小值及對應(yīng)的點(diǎn)
的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在區(qū)間
上單調(diào)遞增,求
的取值范圍;
(Ⅱ)若函數(shù)的圖象與直線
相切,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn)
,對任意實(shí)數(shù)
滿足
,且函數(shù)
的最小值為2.
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),其中
,求函數(shù)
在區(qū)間
上的最小值
;
(3)若在區(qū)間上,函數(shù)
的圖象恒在函數(shù)
的圖象上方,試確定實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)市場調(diào)研,某超市一種玩具在過去一個(gè)月(按30天)的銷售量(件)與價(jià)格(元)均為時(shí)間(天)的函數(shù),且銷售量近似滿足
,價(jià)格近似滿足
。
(1)試寫出該種玩具的日銷售額與時(shí)間
(
,
)的函數(shù)關(guān)系式;
(2)求該種玩具的日銷售額的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是正方體ABCD-A1B1C1D1中BC1上的動點(diǎn),下列說法:
①AP⊥B1C;②BP與CD1所成的角是60°;③三棱錐的體積為定值;④B1P∥平面D1AC;⑤二面角P-AB-C的平面角為45°.
其中正確說法的個(gè)數(shù)有 ( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)函數(shù),若
是
的極值點(diǎn),求
的值并討論
的單調(diào)性;
(2)函數(shù)有兩個(gè)不同的極值點(diǎn),其極小值為為
,試比較
與
的大小關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com